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CS and Language Generation

Computer scientists have been fascinated by language acquisition 
by humans and machines for decades
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Prediction and 

entropy of English 

• A generation game between Betty and Claude Shannon
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CS and Language Generation

1951 Shannon
Prediction and 

entropy of English 

• Introduced n-grams – had tremendous impact in the 1980s!

5-gram model 
He praised love's ability 
to use dialogue to effect 
an emotional response… 

2-gram model 
Rhodesian Army offensive 
on average salary increase 
it four networks … 
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1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

• Separated grammar (syntax) and semantics 

• Introduced a hierarchy of grammars
• Apart from linguistics also influenced TOC 
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I wish to construct a precise model for “able to speak English”… 
   to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English…  
 artificial intelligence… will have to learn… from implicit data…

learning from samples!
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1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

1967 Gold
Formal language 

identification model 

• Laid the groundwork for the celebrated PAC framework 
[Valiant, 1984] (Turing Award, 2010)

• Contains many ideas developed much later in learning theory
→ Learning from samples,
→ Hypothesis class, 
→ Two-player online games, and even active learning!



CS and Language Generation

1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

1967 Gold
Formal language 

identification model 

• Also had a significant impact in linguists
→ Do inductive biases of humans help them learn to speak?
→ Do children need interaction to learn to speak?
→ …
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CS and Language Generation

1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

1967 Gold
Formal language 

identification model 

1970s - 1980s 
Early conversation 
systems - SHRDLU!

& IBM Watson

1990s - 2000s
Wide-spread use of 
statistical models: 

RNNs…

2010s – Present
• word-to-vec’13
• Attention’14
• seq-seq tran..’14
• Transformers’17
• GPT2 Paper’19..
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Modern Language Generators – LLMs

Source:  Quid via AI Index (2024) and US Bureau of Labor Statistics (2024)
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Hallucinations in LLMs 

Early days … “simple” errors 
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Hallucinations in LLMs 

Question. Can hallucinations be avoided while retaining breadth 
via better (but “similar”) models and training methods?

Today, hallucinations rare due to innovations (e.g., chain of thought)
Yet models still hallucinate on complex tasks

Easy to avoid hallucinations by limiting the range or breadth of 
the model



1. Introduction

a. CS and Language Generation

b. Language Generation in the Limit 

2. Our Model

3. Our Results

4. Technical Overview

5. Future Work 

Outline of the Talk



Language Generation in the Limit
A model by Kleinberg and Mullainathan (NeurIPS, 2024)
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Key Properties of the Model

• It is a prompt-less model – can be extended [KM’24]

•  Abstracts away – training process, next-token-prediction, …

For positive results these impose important limitations …[Bhattamishra, 

Ahuja, and Goyal’20] [Sanford, Hsu, Telgarsky’23] [Peng, Narayanan, and Papadimitriou’24] 
[Chen, Peng, and Wu’24]… 

We focus on negative results – which show that the source of 
“difficulty” are not these details
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Key Properties of the Model

• It is a prompt-less model – can be extended [KM’24]

•  Abstracts away – training process, next-token-prediction, …

•  Practical data isn’t adversarial – we’ll study a distributional model

•  Does not capture breadth – we’ll study generation with breadth

Question (also asked by [KM’24]). Is it possible to achieve 
consistent language generation with breadth or is there some 
inherent trade-off between consistency and breadth?
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Statistical Model

• Statistical model of identification and generation based on 
[Angluin, 1988], [BHMvHY, 2021]

• Adversary chooses K and distribution over K

• For t = 1,2,… generator draws t i.i.d. samples and outputs

• Generator needs to satisfy some (binary) property P
• Unified treatment of identification and generation

• As t increases does                            and how quickly?
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Rate of Convergence

• An important rate function is the exponential 

• Generator achieves P at exponential rate if for every K in the 
collection, and for every distribution over K, there exist C, c:

• Order of quantifiers is crucial! 

• If                                         for some distribution no rate is achievable
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Notions of Breadth

(Exact) breadth: 
Contain all elements of K, nothing outside of it

Approximate breadth: 
Miss finitely many elements of K, has nothing outside of it

Unambiguous generation: 
Output closer (wrt symmetric difference) to K than L≠K
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• For our lower bounds we assume the generator satisfies the 
Membership Oracle Property (MOP):

• For any string x we can decide if x is in the output of the 
generator

• Mild assumption, satisfied by large class of generators 
including next-token-predictors

• For certain generators it might be undecidable (related to 
the halting problem)
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Our Results 
Language generation with breadth (statistical) is equivalent to 

language identification in the limit (adversarial)
for any “usual” generators



Main Result 
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Contrast with generation without breadth:



Main Result 

Analogous characterizations for the other two notions of breadth –
generators are required to have decidable MOP and be “stable”



Main Result 

• The above characterization also extends to all generators [Charikar 
and Pabbaraju, COLT’25] [Kalavasis, Mehrotra, Velegkas, arXiv’24]

• [Peale, Raman, Reingold, ICML’25] [Kleinberg and Wei, arXiv’25] 
study finer-grained characterizations (in online setting)
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(Short) Overview of Proof of Main Result
Identifiable (in limit)

Identifiable at (near) 
exponential rate 

Generatable with breath at 
(near) exponential rate

Standard online-to-batch strategy fails:
1. No feedback to fix size of batches
2. Majority vote: K can occur @ many indices

Strengthens the results of [Angluin’88]

We convert a generator with breath at 
rate R to an identifier at rate R

We use growing batch-sizes + postprocessing 
to identify the smallest index of K 
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Further Results: Negative Examples Help

Reminiscent of RLHF, which encodes negative information
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Further Results: Negative Examples Help

Indeed, proxies for negative examples are found useful in practice

Empirical Challenge: 
     Can one extract negative examples from real-world data?



Proof Overview of Main Result 
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Exponential Rates for Identification

• General online-to-batch conversation due to [BHMvHY, 2021]

• Estimate time     so that with     i.i.d. draws the learner wins 
in the “online” game

• Split the input into         non-overlapping batches 

• Run the online game on each batch independently

• “Aggregate” outputs of the games (e.g., majority vote)

Crucially relies on having feedback!

Multiple copies of correct language, cannot immediately aggregate! 



Exponential Rates for Identification

• Modified online-to-batch conversion

• Choose time

• Split the input into         non-overlapping batches
• Gives “almost”-exponential rates

• Run the identification game on each batch independently

• ”Post-process” the outputs s.t. all correct guesses are same index
• Take the majority vote of the indices
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Main challenge, different from [BHMvHY’21]
 



Main Result for Identification

Main challenge, different from [BHMvHY’21]
 

• Can get exact exponential rates, but not in a black-box way



Exponential Rates for Generation

• Previous modified approach does not work



Exponential Rates for Generation

• Previous modified approach does not work

•  Main obstacle: cannot black-box “aggregate” generators
• Formal results [Hanneke, Karbasi, Mehrotra, Velegkas ’25]



Exponential Rates for Generation

• Previous modified approach does not work

•  Main obstacle: cannot black-box “aggregate” generators
• Formal results [Hanneke, Karbasi, Mehrotra, Velegkas ’25]

• Solution: avoid the aggregation altogether and show that the 
(online) algorithm of [KM’24] gives exponential rates!
• First such result in the universal rates line of work
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Exponential Rates for Generation

• [KM’24] algorithm: Given                              create set of 
“critical” languages, output from highest-indexed one

• Critical languages:                                                  such that
• Every language                     is consistent with 
• For all j < i if                      then 

• Key property: For every K there exists                                          
s.t. if                then the algorithm generates correctly

• [This work]: Every such algorithm has exponential rates!
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Tutorial on Language Generation

Grigoris Velegkas
Yale →Google Research

At COLT 2025, this summer!   Visit: LanguageGeneration.github.io

Organizers:

Thank you!

Charlotte Peale
Stanford

Chirag Pabbaraju
Stanford

Moses Charikar
Stanford

Anay Mehrotra
Yale University
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