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CS and Language Generation g

Computer scientists have been fascinated by language acquisition
by humans and machines for decades

Language Identification in the Limit

E Mark GorLp*
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* A generation game between Betty and Claude Shannon

(1) THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG

(3) ==<-R00-=ues (1 % (R R Sl OBlic=x-
(1) READING LAMP ON THE DESK SHED GLOW ON
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CS and Language Generation

1951 Shannon

Prediction and
entropy of English

* Introduced n-grams — had tremendous impact in the 1980s!

2-gram model 5-gram model
Rhodesian Army offensive He praised love's ability

on average salary increase to use dialogue to etfect
it four networks ... an emotional response...
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* Separated grammar (syntax) and semantics

NOAM CHOMSKY

Colorless green ideas sleep furiously S

~ Structures

* Introduced a hierarchy of grammars
* Apart from linguistics also influenced TOC
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I wish to construct or “able to speak English” ...

to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English...
artificial intelligence... will have to learn... from implicit data.)..

learning from samples!
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1951 Shannon

1957 Chomsky 1967 Gold
Prediction and  |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

* Laid the groundwork for the celebrated PAC framework
[Valiant, 1984] (Turing Award, 2010) \@'

* Contains many ideas developed much later in learning theory
- Learning from samples,
- Hypothesis class,
- Two-player online games, and even active learning!



CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and  |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

* Also had a significant impact in linguists
- Do inductive biases of humans help them learn to speak?
- Do children need interaction to learn to speak?

> ...
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CS and Language Generation

1951 Shannon 1957 Chomsky 1967 Gold
Prediction and  |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

1970s - 1980s 1990s - 2000s 2010s — Present
Early conversation Wide-spread use of word-to-vec’13
systems - SHRDLU! statistical models: Attention’14

& IBM Watson RNNs... seq-seq tran.. 14

Transformers’17
GPT2 Paper’19..
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| am giving a talk about language generation. Can
you write something brief (it has to go on a slide)
and creative to demonstrate what today's language
models are capable of?

Reasoned about language model capabilities for 5 seconds >
Language Generation Magic
From code to poetry, Al weaves words into art. For example:
"In circuits' hum, a dream takes flight—
A digital muse sparks worlds of light.

Infinite stories in a single line,
Where thought and code beautifully entwine."

This is today’s language model: creativity, computation, and endless possibilities.




Modern Language Generators — LLMs

Global investment in generative
Al has surged recently

Generative Al refers to artificial intelligence systems that can
create new output, such as images, text, or music, based on
patterns learned from existing data.

$20 billion
$15 billion
$10 billion

$5 billion

$0
2019 2020 2021 2022 2023

Source: Quid via Al Index (2024) and US Bureau of Labor Statistics (2024)



Hallucinations in LLMs

Give a brief definition of hallucinations in language models.

Reasoned about hallucinations in language models for a few seconds >

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.




Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears
plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Early days ... “simple” errors

How many Rs in the word
strawberry?

@  There are two Rs in the word "strawberry.’




Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

Google still recommends glue for your pizza
/ It’s almost like Al answers aren’t fully baked!

by Elizabeth Lopatto
Jun 11, 2024, 6:24 PM EDT
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Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

< (, MetaAl@ To disable Meta Al in WhatsApp, follow
/) Uama3:? these steps:

how do i make you go away 1. Open WhatsApp.

10:26 v/ 2. Tap the Settings icon (three dots on
Android or gear icon on iOS).
To end our conversation, you can simply 3. Select "Settings" or "Account" (varies by
close this chat window or tab. device).
10:26 4. Look for "Meta Al" or "Al assistant" and
toggle it off.

no, i don't want ai in whatsapp Note: Steps may vary depending on your
10:26 W device and WhatsApp version.
10:26

Source: Twitter /| X
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plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Today, hallucinations rare due to innovations (e.g., chain of thought)
Yet models still hallucinate on complex tasks
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Language Generation in the Limit =3

A model by Kleinberg and Mullainathan (NeurIPS, 2024)

Language Generation in the Limit

Jon Kleinberg Sendhil Mullainathan
Departments of Computer Science Booth School of Business
and Information Sciene University of Chicago
Cornell University Chicago IL

Ithaca NY
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Language Identification in the Limit |Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L;»
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;

3. Learner wins if guesses are eventually right: ..., 1,

i*,1%,1%,...

Adversary has to present a complete enumeration

Example: K=IN, 2,4,6,..., 1,2,3,...
o v



Language Identification in the Limit |Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L;»
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;

3. Learner wins if guesses are eventually right: ..., i, 1%, i

> D
,l J ® e

Adversary has to present a complete enumeration

Example: K=N, 2,4,6,..., 1,2,3,... and 2,4,6,...,1,2,3,...
o v o
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Membership Query o



Language Identification in the Limit |Gold, 1967]

Game between adversary @ and learner E
1. Adversary picks target K = L~
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;

3. Learner wins if guesses are eventually right: ..., 1,

i*,1%,1%,...

[Learners access:

Isw e L;? @
Membership Query o
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Language Ceneration in the Limit (kv24)

e Domain X, e.g., {a-z, A-Z}* or N
e Collection of languages £ = {Lq, Ly, ...}

Game between adversary @ nd generator B=J

1. Adversary picks target K = L;«
2. Roundst =1,2,3,...,

(a) adversary shows example x; € K, and
(b) generator outputs unseen string g

3. Generator wins if guesses are eventually in K: K 3 g¢, g¢+1, - - -

after some finite time t < oo




Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]
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> Is £ generatable? Yes, even with a single sample!
Output an unseen example from {x1 +1,x,+2,...}

> Is £ identifiable?
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> Is £ identifiable?
Theorem. Angluin (1980) £ is not identifiable
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Key Properties of the Model

* Iisapremptlessmeodel — can be extended [KM'24]

* Abstracts away — training process, next-token-prediction, ...

For positive results these impose important limitations ...[Bhattamishra,

Ahuja, and Goyal’20] [Sanford, Hsu, Telgarsky’23] [Peng, Narayanan, and Papadimitriou’24]
[Chen, Peng, and Wu'24]...

We focus on negative results — which show that the source of
“difficulty” are not these details
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We’ll consider a distributional model
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Key Properties of the Model

+ IHisapremptlessmmoedel — can be extended [KM'24]

* Abstracts away — training process, next-token-prediction, ...
* Practical data isn’t adversarial — we'll study a distributional model

* Does not capture breadth — we'll study generation with breadth

Question (also asked by [KM'24]). Is it possible to achieve

consistent language generation with breadth or is there some
inherent trade-off between consistency and breadth?
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Statistical Model

 Statistical model of identification and generation based on
[Angluin, 1988], [BHMvVHY, 2021]

* Adversary chooses K and distribution over K
» Fort=1,2,... generator draws t i.i.d. samples and outputs Gt € X

* Generator needs to satisty some (binary) property P
* Unified treatment of identification and generation

+ As tincreases does E[P(Gt)] — 0 and how quickly?
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D
Game between adversary @ nd generator =5

1. Adversary picks target K = L;x and distribution over K
2. Roundst=1,2,3,...,
(a) generator draws t i.i.d. examples from the distribu-

tion and outputs G C X.
3. Generator wins if it satisfies the property P as t — oo:




Statistical Model

e Domain X, collection of languages £ = {Lq, Lo, ... }

Mool
Game between adversary @ nd generator =5

. Adversary picks target K = L;» and distribution over K
. Roundst =1,2,3, ...,
(a) generator draws t i.i.d. examples from the distribu-

tion and outputs G C X.
. Generator wins if it satisfies the property P as t — oo:

lim; e E[P(Gt)] = 0
. Generator has rate R if E[P(G;)] < C-R(c-t) for all ¢, for

distribution-dependent ¢, C
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* An important rate function is the exponential R(t) =e o

* Generator achieves P at exponential rate if for every K in the
collection, and for every distribution over K, there exist C, c:

E[P(G)] < C-e ¢

1 — 2t

* Order of quantifiers is crucial!
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Rate of Convergence

* An important rate function is the exponential R(t) = e

* Generator achieves P at exponential rate if for every K in the
collection, and for every distribution over K, there exist C, c:

E[P(G)] < C-e ¢

* Order of quantifiers is crucial!

o If limi o E[P(Gt)| # 0 for some distribution no rate is achievable
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Notions of Breadth

(Exact) breadth:
Contain all elements of K, nothing outside of it

Approximate breadth:
Miss tinitely many elements of K, has nothing outside of it

Unambiguous generation:
Output closer (wrt symmetric difference) to K than L#K Gt
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MOP Assumption

* For our lower bounds we assume the generator satisfies the
Membership Oracle Property (MOP):

* For any string x we can decide if x is in the output of the
generator

« Mild assumption, satisfied by large class of generators
including next-token-predictors

* For certain generators it might be undecidable (related to
the halting problem)
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Our Results é

Language generation with breadth (statistical) is equivalent to
language identification in the limit (adversarial)
for any “usual” generators
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Main Result

Main Theorem [This work]. For any language collection £:

> If £ is not identifiable, no generator G with decidable MOP
can generate from £ with breadth (at any rate).
> If £ is identifiable, there is G with decidable MOP, which

generates with breadth from £ at (near) exponential rate.

* The above characterization also extends to all generators [Charikar
and Pabbaraju, COLT’25] [Kalavasis, Mehrotra, Velegkas, arXiv'24]

* [Peale, Raman, Reingold, ICML'25] [Kleinberg and Wei, arXiv’25]
study finer-grained characterizations (in online setting)



(Short) Overview of Proof of Main Result

Claim 1. If £ is not identifiable, no generator G with decidable
MOP can generate from £ with breadth (at any rate).

Natural Strategy: Convert a generator G with breadth, to an identifier

Observation: Need to use some property of G; otherwise, it only
provides an enumeration of K that we already had!

Technical Vignette (Properties of G)

1. G is non-adaptive
Simple collections £ remain unidentifiable for many enumerations

2. G samples from a fixed distribution
L remain unidentifiable w.r.t. fixed distribution [Angluin’88]




(Short) Overview of Proof of Main Result

Idea 1: We will use membership oracle access to supp(G)

Roughly, membership to supp(G), provides membership to K

This is sufficient to get an identifier for £ in the limit from G

Challenges in statistical setting. Our hope is:
Convert generator with breadth at rate R(-) to identifier at rate R(-)
We need an identifier in the limit for contradiction.

L not identifiable in the limit, may be identifiable at rate R'(-)
This is true for binary classification [BHMvHY?21]




(Short) Overview of Proof of Main Result

Collection £ — Not identiﬁellble (in limit)

Strengthens the results of [Angluin’88]

!

Not identifiable at any rate
I

We convert a generator with breath at
rate R to an identifier at rate R

}

Not generatable with
breath at any rate



(Short) Overview of Proof of Main Result

Identifiable (in limit) «— Collection £ — |
|

Standard online-to-batch strategy fails:
1. No feedback to fix size of batches |
2. Majority vote: K can occur @ many indices

We use growing batch-sizes + postprocessing |
to identify the smallest index of K

v
Identifiable at (near) I

exponential rate

1

Generatable with breath at
(near) exponential rate



Further Results: Rates for Identification

Theorem [This work]. For any “non-trivial” collection £:

> If £ is identifiable in the limit, there is G, which identifies £
at (near) exponential rate.

> If £ is not identifiable in the limit, no generator G can identify

L at any rate.

Further Results: We achieve exact exponential rates in various

special: such as, when |{| < co or one has stronger access to L.



Further Results: Negative Examples Help

Theorem [This work]. For any collection £, given positive and

negative examples, there exists a generator which generates

from £ with breadh at exponential rate.

Reminiscent of RLHF, which encodes negative information
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Further Results: Negative Examples Help

Theorem [This work]. For any collection £, given positive and

negative examples, there exists a generator which generates

from £ with breadh at exponential rate.

Indeed, proxies for negative examples are found useful in practice

NEURAL TEXT PEGENERATION WITH
UNLIKELIHOOD TRAINING

e T e o D NEGATIVE DATA AUGMENTATION

‘Kyunghyun Cho'??* & Jason Weston' 2 Abhishek Sinha'® Kumar Ayush'*  Jiaming Song'* Burak Uzkent'  Hongxia Jin*

Stefano Ermon'!

Empirical Challenge:
Can one extract negative examples from real-world data?



Proof Overview of Main Result
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Exponential Rates for Identification

* General online-to-batch conversion due to [BHMvHY, 2021]

Estimate time t*so that with t*i.i.d. draws the learner wins
in the “online” game

Split the input into t/t* non-overlapping batches
Run the online game on each batch independently

“Aggregate” outputs of the games (e.g., majority vote)
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* General online-to-batch conversion due to [BHMvHY, 2021]
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Exponential Rates for Identification

* General online-to-batch conversation due to [BHMvHY, 2021]

) -.. * 1 *.. A a a
V'V @

) A ) () ) ) ava A )
VYV edeC\Ae U @ V'V

Crucially relies on having feedback!

it theiret it LE i ot
P el Lt i demendent

Multiple copies of correct language, cannot immediately aggregate!

£/ 77
L] .,



Exponential Rates for Identification

« Modified online-to-batch conversion
e Choose time t* = w(1)

* Split the input into t/t" non-overlapping batches
* Gives “almost”-exponential rates

* Run the identification game on each batch independently

* "Post-process” the outputs s.t. all correct guesses are same index
» Take the majority vote of the indices



Main Result for Identification

Theorem [This work]. For any “non-trivial” collection £:

> If £ is identifiable in the limit, there is G, which identifies £
at (near) exponential rate.

> If £ is not identifiable in the limit, no generator G can identify
L at any rate. Main challenge, ditferent from [BHMvHY’21]




Main Result for Identification

Theorem [This work]. For any “non-trivial” collection £:

> If £ is identifiable in the limit, there is G, which identifies £
at (near) exponential rate.

> If £ is not identifiable in the limit, no generator G can identify
L at any rate. Main challenge, ditferent from [BHMvHY’21]

* Can get exact exponential rates, but not in a black-box way
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Exponential Rates for Generation

* Previous modified approach does not work

* Main obstacle: cannot black-box “aggregate” generators
* Formal results [Hanneke, Karbasi, Mehrotra, Velegkas "25]

* Solution: avoid the aggregation altogether and show that the
(online) algorithm of [KM’24] gives exponential rates!
 First such result in the universal rates line of work
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Exponential Rates for Generation

» [KM’24] algorithm: Given S; = {s1, ..., st} create set of
“critical” languages, output from highest-indexed one

* Critical languages: ©;(S;) C L; = {Lq,...,L;} such that
» Every languagel; € C;(S¢) is consistent with S;
» Forallj<iif Lj € C+(St) then L; C L;

* Key property: For every K there exists SK = {sil,. ., ,siﬁ} C K
s.t. if S& C S, then the algorithm generates correctly

* [This work]: Every such algorithm has exponential rates!
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Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation: Partial results [KMV'24]
(b) Fine-grained trade-offs between hallucinations and breadth:

Partial results [KMV'24],[CP’24],[KW’25]
2. Allow generators to output multiple responses (could bypass
many impossiblity results)
3. Developing computationally efficient algorithms in more struc-

tured settings
4. What other type of feedback is useful? Partial results [CP"24]



Tutorial on Language Generation

At COLT 2025, this summer! Visit: LanguageGeneration.github.io

Organizers:

Moses Charikar ~ Anay Mehrotra Chirag Pabbaraju Charlotte Peale =~ Grigoris Velegkas
Stanford Yale University Stanford Stanford  Yale - Google Research

L

Thank you!
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