Inherent Trade-offs in
Language Generation

Anay Mehrotra

Yale University

Alkis Kalavasis Grigoris Velegkas

May 2025

CS and Language Generation g

Computer scientists have been fascinated by language acquisition
by humans and machines for decades

Language Identification in the Limit

E Mark GorLp*

https://en.wikipedia.org/wiki/File:C.E._Shannon._Tekniska_museet_43069_(cropped).jpg
https://en.wikipedia.org/wiki/File:Noam_Chomsky_(1977).jpg

CS and Language Generation

1951 Shannon

Prediction and
entropy of English

https://en.wikipedia.org/wiki/File:C.E._Shannon._Tekniska_museet_43069_(cropped).jpg

CS and Language Generation

1951 Shannon

Prediction and
entropy of English

* A generation game between Betty and Claude Shannon

(1) THE ROOM WAS NOT VERY LIGHT A SMALL OBLONG

(3) ==<-R00-=ues (1 % (R R Sl OBlic=x-
(1) READING LAMP ON THE DESK SHED GLOW ON
(3) RBA-=--cncen SN D----SHED-GLO--0- -

https://en.wikipedia.org/wiki/File:C.E._Shannon._Tekniska_museet_43069_(cropped).jpg

CS and Language Generation

1951 Shannon

Prediction and
entropy of English

* Introduced n-grams — had tremendous impact in the 1980s!

2-gram model 5-gram model
Rhodesian Army offensive He praised love's ability

on average salary increase to use dialogue to etfect
it four networks ... an emotional response...

https://en.wikipedia.org/wiki/File:C.E._Shannon._Tekniska_museet_43069_(cropped).jpg

CS and Language Generation

1951 Shannon

Prediction and
entropy of English

CS and Language Generation

1951 Shannon

1957 Chomsky
Prediction and |=»| Syntactic structures
entropy of English & formal grammars

NOAM CHOMSKY

~ Syntactic
~ Structures

https://en.wikipedia.org/wiki/File:Syntactic_Structures_Front_Cover_(1957_first_edition).jpg
https://en.wikipedia.org/wiki/File:Noam_Chomsky_(1977).jpg

CS and Language Generation

1951 Shannon

1957 Chomsky
Prediction and |=»| Syntactic structures
entropy of English & formal grammars

* Separated grammar (syntax) and semantics

NOAM CHOMSKY

Colorless green ideas sleep furiously S

~ Structures

https://en.wikipedia.org/wiki/File:Syntactic_Structures_Front_Cover_(1957_first_edition).jpg
https://en.wikipedia.org/wiki/File:Noam_Chomsky_(1977).jpg

CS and Language Generation

1951 Shannon

1957 Chomsky
Prediction and |=»| Syntactic structures
entropy of English & formal grammars

* Separated grammar (syntax) and semantics

NOAM CHOMSKY

Colorless green ideas sleep furiously S

~ Structures

* Introduced a hierarchy of grammars
* Apart from linguistics also influenced TOC

https://en.wikipedia.org/wiki/File:Syntactic_Structures_Front_Cover_(1957_first_edition).jpg
https://en.wikipedia.org/wiki/File:Noam_Chomsky_(1977).jpg

CS and Language Generation

1951 Shannon

1957 Chomsky
Prediction and |=»| Syntactic structures
entropy of English & formal grammars

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

I wish to construct a precise model for “able to speak English” ...
to investigate theoretically how it can be achieved artificially

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

I wish to construct a precise model for “able to speak English” ...
to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English...
artificial intelligence... will have to learn... from implicit data. ..

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

I wish to construct or “able to speak English” ...

to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English...
artificial intelligence... will have to learn... from implicit data. ..

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

I wish to construct or “able to speak English” ...

to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English...
artificial intelligence... will have to learn... from implicit data.)..

learning from samples!

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

* Laid the groundwork for the celebrated PAC framework
[Valiant, 1984] (Turing Award, 2010) \@'

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

* Laid the groundwork for the celebrated PAC framework
[Valiant, 1984] (Turing Award, 2010) \@'

* Contains many ideas developed much later in learning theory
- Learning from samples,
- Hypothesis class,
- Two-player online games, and even active learning!

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

* Also had a significant impact in linguists
- Do inductive biases of humans help them learn to speak?
- Do children need interaction to learn to speak?

> ...

CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

CS and Language Generation

1951 Shannon 1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

1970s - 1980s

Early conversation
systems - SHRDLU!
& IBM Watson

CS and Language Generation

1951 Shannon 1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

1970s - 1980s 1990s - 2000s

Early conversation Wide-spread use of
systems - SHRDLU! statistical models:
& IBM Watson RNNs...

CS and Language Generation

1951 Shannon 1957 Chomsky 1967 Gold
Prediction and |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

1970s - 1980s 1990s - 2000s 2010s — Present
Early conversation Wide-spread use of word-to-vec’13
systems - SHRDLU! statistical models: Attention’14

& IBM Watson RNNs... seq-seq tran.. 14

Transformers’17
GPT2 Paper’19..

Modern Language Generators — LLMs

Modern Language Generators — LLMs

| am giving a talk about language generation. Can
you write something brief (it has to go on a slide)
and creative to demonstrate what today's language
models are capable of?

Reasoned about language model capabilities for 5 seconds >
Language Generation Magic
From code to poetry, Al weaves words into art. For example:
"In circuits' hum, a dream takes flight—
A digital muse sparks worlds of light.

Infinite stories in a single line,
Where thought and code beautifully entwine."

This is today’s language model: creativity, computation, and endless possibilities.

Modern Language Generators — LLMs

Time to Reach 100M Users

&(Months to get to 100 million global Monthly Active Users

78

Google Translate

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users

%
78

I |

Google Translate Uber

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users

%
78

70 m
I |

Google Translate Uber Telegram

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users

%
78

70 m (=)
61
| 55

Google Translate Uber Telegram Spotify

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users

%
78

70 n ‘v
61
55

| ' |

Google Translate Uber Telegram Spotify Pinterest

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users

%
78
0

7 n
61 -
55

. [

']

Google Translate Uber Telegram Spotify Pinterest Instagram

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Use

‘*f

Google Translate Uber

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users

%
78
0

61
55
i (C)
30
9
2

Google Translate Uber Telegram Spotify Pinterest Instagram TikTok ChatGPT

Source: UBS and Yahoo Finance

Modern Language Generators — LLMs

Global investment in generative
Al has surged recently

Generative Al refers to artificial intelligence systems that can
create new output, such as images, text, or music, based on
patterns learned from existing data.

$20 billion
$15 billion
$10 billion

$5 billion

$0
2019 2020 2021 2022 2023

Source: Quid via Al Index (2024) and US Bureau of Labor Statistics (2024)

Hallucinations in LLMs

Give a brief definition of hallucinations in language models.

Reasoned about hallucinations in language models for a few seconds >

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears
plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Early days ... “simple” errors

How many Rs in the word
strawberry?

@ There are two Rs in the word "strawberry.’

Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

Google still recommends glue for your pizza
/ It’s almost like Al answers aren’t fully baked!

by Elizabeth Lopatto
Jun 11, 2024, 6:24 PM EDT

Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

Source: Twitter /| X

Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

< (, MetaAl@ To disable Meta Al in WhatsApp, follow
/) Uama3:? these steps:

how do i make you go away 1. Open WhatsApp.

10:26 v/ 2. Tap the Settings icon (three dots on
Android or gear icon on iOS).
To end our conversation, you can simply 3. Select "Settings" or "Account" (varies by
close this chat window or tab. device).
10:26 4. Look for "Meta Al" or "Al assistant" and
toggle it off.

no, i don't want ai in whatsapp Note: Steps may vary depending on your
10:26 W device and WhatsApp version.
10:26

Source: Twitter /| X

Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Today, hallucinations are more rare on “common tasks”

* Due to a variety of techniques:

—> chain-of-thought,
- auxiliary tools (e.g., web search), ...

* Models still hallucinate and make errors on more complex
tasks (e.g., proofs, real world tasks, ...)

Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Today, hallucinations are more rare on “common tasks”

* Due to a variety of techniques:
—> chain-of-thought,
- auxiliary tools (e.g., web search), ...

* Models still hallucinate and make errors on more complex
tasks (e.g., proofs, real world tasks, ...)

Question. Can hallucinations be avoided by better (but “similar”)
models/training or is fundamental change needed?

Outline of the Talk

1. Motivation: CS and Language Generation

2. Model

A Model of Language Generation &

We introduce the model of language generation by Kleinberg and
Mullainathan (2024), which builds on [Gold’67] and [Angluin’79]

Language Generation in the Limit

Jon Kleinberg Sendhil Mullainathan

Departments of Computer Science Booth School of Business
and Information Sciene University of Chicago
Cornell University Chicago IL

Ithaca NY

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

Target language K

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

' Target language K
Training data S

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

Generator’s output G

' Target language K
Training data S

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

&

Generator’s output G

Target language K

Training data S

The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

@ Generator’s output G
Target language K

' Training data S

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

e Domain X, e.g., {a-z, A-Z}* or N
e Collection of languages £ = {Lq, Lo, ...}

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

¢ Domain X, e.g., {a-z, A-Z}" or N - E.g, regular languages
e Collection of languages £ = {Lq, Lo, ...}

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {Lq, L), ... }

Game between adversary { and learner g

1. Adversary picks target K = L~

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {Lq, L), ... }

Game between adversary { and learner g

1. Adversary picks target K = L~
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {Lq, L), ... }

Game between adversary { and learner g

1. Adversary picks target K = L~
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;

3. Learner wins if guesses are eventually right

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. 0*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. o*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Adversary has to present a complete enumeration
Example: K = N,

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. o*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Adversary has to present a complete enumeration

Example: K=IN, 2,4,6,...,
o

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. o*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Adversary has to present a complete enumeration

Example: K=IN, 2,4,6,..., 1,2,3,...
(% v

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. o*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Adversary has to present a complete enumeration

Example: K =N, 2,4,6,..., 1,2,3,... and 2,4,6,...,1,2,3,...
% v o

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. 0*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Learners access:

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. o*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Learners access:

Isw e L;?
Membership Query ®

Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
o

3. Learner wins if guesses are eventually right: ..., i, 1%, i

Learners access:
Isw e L;? Is L; C L]?

Membership Query ® Subset Query @ V]

Model of Language CGeneration

Language Generation in the Limit [Kleinberg-Mullainathan’24]
e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {L1,L,,...}

Model of Language CGeneration

Language Generation in the Limit [Kleinberg-Mullainathan’24]
e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {L1,L,,...}

Game between adversary ¥ nd generator =

1. Adversary picks target K = L;j»

Model of Language Ceneration

Language Generation in the Limit [Kleinberg-Mullainathan’24]
e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {L1,L,,...}

Game between adversary @ and generator =

1. Adversary picks target K = L;j»
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) generator outputs unseen string g;

Model of Language Ceneration

Language Generation in the Limit [Kleinberg-Mullainathan’24]
e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {L1,L,,...}

Game between adversary @ and generator =

1. Adversary picks target K = L;j»
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) generator outputs unseen string g;

3. Generator wins if guesses are eventually in K: K > g¢, 9141, ...

after some finite time t < oo

Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]
L:{Z,Ll,Lz,...} where Li:{—i,—i+l,—i+2,...}.

L
—_———— —_——_——T ————)

-1 —+1 —+2 —+3...

Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]

L:{Z,Ll,Lz,...} where Ll:{ 1, zll,—z+2,}
Li Li 4
—— —— e e e s s el

-1 —+1 —+2 —+3...

Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]

L:{Z,Ll,Lz,...} where Li:{—i,—i—l—l,—i—l—Z,...}.

L; L; 4
e e —————rr————_
-1 —+1 —+2 —+3...

> Is £ generatable?

Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]

L:{Z,Ll,Lz,...} where Li:{—i,—i+l,—i+2,...}.

Example [kv24) [cP24)

L:{Z,Ll,Lz,...} where Ll:{ 1, zll,—z+2,}

—1-2 —1—-1 =1 —a+1 —1+2 —1+3...

> Is £ generatable? Yes, even with a single sample!

Output an unseen example from {x1 +1,x, +2,...}

Example [kv24) [cP24)

L:{Z,Ll,Lz,...} where Li:{—i,—i—l—l,—i—l—Z,...}.

—1-2 —1—-1 =1 —a+1 —1+2 —1+3...

> Is £ generatable? Yes, even with a single sample!
Output an unseen example from {x1 +1,x, +2,...}

> Is L identifiable?

Example [xv24] [cpr24)

L:{Z,Ll,Lz,...} where Li:{—i,—i—l—l,—i—l—Z,...}.

—1-2 —1—-1 =1 —a+1 —1+2 —1+3...

> Is £ generatable? Yes, even with a single sample!
Output an unseen example from {x; +1,x, +2,... }

> Is £ identifiable?
Theorem. Angluin (1980) £ is not identifiable

Example [xv24] [cpr24)
L:{Z,Ll,Lz,...} where Li:{—i,—i—l—l,—i—l—Z,...}.

L;

—i—2 S A Y

> Is £ generatable? Yes, even with a single sample!
Output an unseen example from {x; +1,x, +2,... }

> Is £ identifiable?
Theorem. Angluin (1980) £ is not identifiable

Example [kv24) [cP24)
L:{Z,Ll,Lz,...} where Li:{—i,—i+l,—i+2,...}.

Li., L
— A @ m - - L — —

-i-2G-1) i —i+1 -i+2 -i+3...

> Is £ identifiable?
Theorem. Angluin (1980) £ is not identifiable

Example [kv24) [cP24)
L:{Z,Ll,Lz,...} where Li:{—i,—i+l,—i+2,...}.

Li., L
— A @ m - - L — —

8] D) Aef

> Is £ identifiable?
Theorem. Angluin (1980) £ is not identifiable

Model of Language Generation

Model of Language Generation

Abstractly captures many aspects of LLM training =5
* No feedback tor generator

* Generator tries to generate unseen strings
* Generator cannot ask if w € K

Model of Language Generation

Abstractly captures many aspects of LLM training =5
* No feedback tor generator

* Generator tries to generate unseen strings

* Generator cannot ask if w € K

Details abstracted away: computation, next-token-prediction, ...

These are important ...[Bhattamishra, Ahuja, and Goyal’20] [Sanford, Hsu,
Telgarsky’23] [Peng, Narayanan, and Papadimitriou’24] [Chen, Peng, and Wu'24]...

Model of Language Generation

Language Generation [KM"24]. Generator wins if guesses are

eventually in K: K 5 g¢,g¢+1,... after some finite time ¢ < o0

Abstractly captures many aspects of LLM training =5
* No feedback tor generator

* Generator tries to generate unseen strings

* Generator cannot ask if w € K

Question. Even in an idealized model, can hallucinations be avoided

with better models/training or is fundamental change needed?

Is Language Generation Feasible?

Even reqular languages are non-identifiable... simpler than English

Is Language Generation Feasible?

Informal Theorem [Gold'67, Angluin’79, '80] Almost all inter-

esting language collections £ are not identifiable

Even reqular languages are non-identifiable... simpler than English

Informal Theorem [Kleinberg-Mullainathan’24]| All (countable)

language collections £ are generatable

Outline of the Talk

1. Motivation: CS and Language Generation
2. Model

3. Overview Our Definitions and Results

a. _ (Generation with Breadth)

b. Characterizations II (Stable Generation with Breadth)
c. Beyond Characterizations
d. Learning Curves

4. Overview of Some Proofs

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

i

> In the t-th step, generate from Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

i

> In the t-th step, generate from Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

i

> In the t-th step, generate from Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

i

> In the t-th step, generate from Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

i

> In the t-th step, generate from Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

i

> In the t-th step, generate from Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G"2---2C7 2.

> In the t-th step, generate from Cft)

Lemma. K enters the critical list at finite ty < o and never leaves

cht) cht) (K o (%’ Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G"2---2C7 2.

> In the t-th step, generate from Cft)

Lemma. K enters the critical list at finite ty < o and never leaves

(t)

> For t > tg, generator outputs from C,” C K (no hallucinations!)

cht) cht) (K o (%’ Cft)

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G"2---2C7 2.

> In the t-th step, generate from Cft)

Lemma. K enters the critical list at finite ty < o and never leaves

(t)

> For t > tg, generator outputs from C,” C K (no hallucinations!)
> [KM'24]’s algorithm generates from a “decreasing” subset of K

[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

1

> In the t-th step, generate from Cft)

Lemma. K enters the critical list at finite ty < o and never leaves

(t)

> For t > tg, generator outputs from C,” C K (no hallucinations!)
> [KM'24]’s algorithm generates from a “decreasing” subset of K

Adaptation of our main question [KM24]: Can a generator avoid

hallucinations while maintaining some notion of “breadth”?

Language Generation =

Characterizations I

* We introduce several notions of breadth
* We show that achieving breadth + no hallucinations is
impossible for most language collections

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth
G(S) =K

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth
G(S) =K

O

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth
G(S) =K

@

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth
G(S) =K K\ G(S)| < o0

@

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth
G(S) =K K\ G(S)| < o0

o O

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth
= KA G(S

Q @

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth
K\ G(S)| < o0

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth Infinite Coverage
K\ G(5)] < o0 IKNG(S)| =0

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth Infinite Coverage
K\ G(5)] < o0 IKNG(S)| =0

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth Infinite Coverage
K\ G(5)] < o0 IKNG(S)| =0

Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth Infinite Coverage
K\ G(S)| < o KN G(S)| = o0

Consider K =N, G(S)=1{i,i+1,...} and G(S)=1{2,4,6,...}

Results for Breadth with no Hallucination

Results for Breadth with no Hallucination

Infinite coverage <= Generation <= All countable collections
[KM’24]

Results for Breadth with no Hallucination

Infinite coverage <= Generation <= All countable collections
[KM’24]

Exact Breadth <= Angluin’s Condition [Angluin,1980]

Results for Breadth with no Hallucination

Infinite coverage <= Generation <= All countable collections
[KM’24]

Approximate Breadth <= Weak Angluin’s Condition [KMV24]
Exact Breadth <= Angluin’s Condition [Angluin,1980]

Results for Breadth with no Hallucination

Infinite coverage <= Generation <= All countable collections
[KM’24]

Not satisfied even, e.g., by regular languages

Approximate Breadth <= Weak Angluin’s Condition [KMV24]
Exact Breadth <= Angluin’s Condition [Angluin,1980]

Results for Breadth with no Hallucination

Infinite coverage <= Generation <= All countable collections
[KM’24]

Not satisfied even, e.g., by regular languages

Approximate Breadth <= Weak Angluin’s Condition [KMV24]

Exact Breadth <= Angluin’s Condition [Angluin,1980]

Main Takeaway [Kalavasis, M., Velegkas'24 and "25]. For most
interesting language collections, LLMs cannot avoid
hallucination while achieving any of these notions of breadth

Technical Vignette: Properties of Breadth

Definitions. A relation P satisfies:
> Uniqueness if (G, L), (G,L") € P,then L = L'

> Finite non-uniqueness if (G,L), (G,L") € P, then |LAL'| < o0

Technical Vignette: Properties of Breadth

Definitions. A relation P satisfies:
> Uniqueness if (G, L), (G,L") € P,then L = L'

> Finite non-uniqueness if (G,L), (G,L") € P, then |LAL'| < o0

Fact. Exact breadth satisfies uniqueness

Fact. Approximate breadth satisties finite non-uniqueness

Technical Vignette: Properties of Breadth

Definitions. A relation P satisfies:
> Uniqueness if (G, L), (G,L") € P,then L = L'

> Finite non-uniqueness if (G, L), (G,L") € P, then |[LAL'| < o0

Fact. Exact breadth satisfies uniqueness

Fact. Approximate breadth satisties finite non-uniqueness

Theorem. [Kalavasis, M., Velegkas, 24] Consider collection £.

> If P is unique and £ violates Angluin’s condition, or

> If P is finite-non-ungiue and £ violates weak Angluin’s condition,

Then, no generator can satisfy P in the limit

Finite Hallucinations

| G(S)\K | < o0

No Hallucinations

| G(SO\K| =0

Angluin’s Condition
[Ang 80]
(i.e., Exact Breadth)

Zero Missing Elements

| K\G(S)| =0

Weak Angluin’s Condition
[KMV 24b, CP 24]

Weak Angluin’s Condition
[KMV 24b, CP 24]
(i.e., Approximate Breadth)

Finite Missing Elements

| K\G(S,) | < o0

Weak Angluin’s Condition
[KMYV 24b, CP 24]

Infinite Present Elements

IKNG(S)| = oo

All Countable Collections All Countable Collections

Results for Breadth with some Hallucination

Infinite Hallucinations

| GIS)\K| = o0

All Countable Collections

All Countable Collections

All Countable Collections

Results for Breadth with some Hallucination

No Hallucinations Finite Hallucinations Infinite Hallucinations

| G(S)\K| =0 | GIS)\K| < o0 | GIS)\K| = o0

Angluin’s Condition
[Ang 80]
| K\G(S)| =0 (i.e., Exact Breadth)

Zero Missing Elements Weak Angluin’s Condition

[KMYV 24b, CP 24] All Countable Collections

Weak Angluin’s Condition
[KMV 24b, CP 24]
| K\G(S) | < o0 (i.e., Approximate Breadth)

Finite Missing Elements Weak Angluin’s Condition

[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements

| KN G(S,) | =

All Countable Collections All Countable Collections All Countable Collections

Question. Can one develop a more fine-grained characterization?

Results for Breadth with some Hallucination

No Hallucinations Finite Hallucinations

|G(S)\K] =0 | GS)\K| < oo
Zero Missing Elements Angluin’s Condition Weak Angluin’s Condition
Lng:80] [KMV 24b, CP 24]
| K\G(S)| =0 (i.e., Exact Breadth) ’
Finite Missing Elements Weas Anginis Condition Weak Angluin’s Condition

[KMYV 24b, CP 24]

(i.e., Approximate Breadth) [KMV 24b, CP 24]

| K\G(S))| < 0

Infinite Present Elements

All Countable Collections All Countable Collections
| KN G(S,) | =

Infinite Hallucinations

| GIS)\K| = o0

All Countable Collections

All Countable Collections

All Countable Collections

Question. Can one develop a more fine-grained characterization?
Progress. [Kleinberg and Wei, 2025] and [Peale, Raman, Reingold, 2025]

Outline of the Talk

1. Motivation: CS and Language Generation
2. Model

3. Overview Our Definitions and Results

a. CharacterizationsI (Generation with Breadth)
b. Characterizations Il (Stable Generation with Breadth)

Language Generation =

Characterizations II

* We introduce stable generation
* Related to whether the learner can recognize that it has learnt?
* Requiring stability makes language generation much harder

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

Ggﬂ Ccét) (K (ceceeeeeees C % Ct(t)

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

!
Ggﬂ (Cét) (K (ceceeeeeees C % Ct(t)

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

N
Ggﬂ (Cét) (K (ceceeeeeees C % Ct(t)

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

S -
Ggﬂ (Cét)(K (ceceeeeeees C %Cfﬂ

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

S - 1
Ggﬂ (Cét)(K (ceceeeeeees C %Cfﬂ

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

l I I
(£) 1(f) ; : : (£)
C, (Cz (K (Goocooooon C C,

Stability in Language Generation

[KM"24]’s and our generator change output set infinitely often

l I I
(£) 1(15) — : (£)
C, CCZ (K (Goocooooon C C,

Can generator’s stabilize their outputs?
If the generator “knows” it has learnt, then it can stabilize.

Stability in Language Generation

[KM’24]’s and our generator change output set infinitely often

A e— .
Gl ((x ez (g}q

Can generator’s stabilize their outputs?
If the generator “knows” it has learnt, then it can stabilize.

Stability. A generator is said to achieve stability if for any target K

and its enumeration, there is a finite t < oo, after which G(S;) =
G(Sy) forall t >t

Results with Stability

No Hallucinations Finite Hallucinations Infinite Hallucinations

| G(S)\K| =0 | G(S)\K| < o0 | G(S,)\K| = 0

Angluin’s Condition
[Ang 80]
| K\G(S)| =0 (i.e., Exact Breadth)

Zero Missing Elements Weak Angluin’s Condition

[KMV 24b, CP 24] All Countable Collections

Weak Angluin’s Condition
[KMV 24b, CP 24]
| K\G(S) | < o (i.e., Approximate Breadth)

Finite Missing Elements Weak Angluin’s Condition

[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements

|IKNG(S,)| = oo

All Countable Collections All Countable Collections All Countable Collections

Results with Stability

Zero Missing Elements

|K\G(S))| = 0

Finite Missing Elements

| K\G(S,)| < oo

Infinite Present Elements

|KNG(S,)| =

No Hallucinations Finite Hallucinations

|G(S)O\K| =0 | GIS)\K| < o0

Angluin’s Condition
[Ang 80]
(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24]

Angluin’s Condition
[Ang 80]

Weak Angluin’s Condition

(i.e., Approximate Breadth) [KMV 24b, CP 24]

Characterization ?

(Not all countable Characterization ?
collections)

Infinite Hallucinations

| GS)\K| = o0

All Countable Collections

All Countable Collections

All Countable Collections

Outline of the Talk

1. Motivation: CS and Language Generation
2. Model

3. Overview Our Definitions and Results

a. CharacterizationsI (Generation with Breadth)
b. Characterizations I (Stable Generation with Breadth)
c. Beyond Characterizations

Language Generation =

Beyond Characterizations

Providing the generator with negative examples, enables achieving
breadth without hallucinations!

Generation with Negative Examples

Informal Theorem [Gold’67][Kalavasis, M., Velegkas"25] Consider

a variation of language generation where adversary enumerates

both elements in K and elements outside of K (negative examples).

Then, all countable collections £ are generatable with exact breadth.

Generation with Negative Examples

Informal Theorem [Gold’67][Kalavasis, M., Velegkas"25] Consider

a variation of language generation where adversary enumerates

both elements in K and elements outside of K (negative examples).

Then, all countable collections £ are generatable with exact breadth.

Insights into LLM training

* Perhaps a principled explanation why RLHF is usetul

* Does this suggest including negative information in pre-
training would be useful?

Generation with Negative Examples

Proxies for negative examples have found to be useful

NEURAL TEXT BPEGENERATION WITH
UNLIKELIHOOD TRAINING

Sean Welleck':2* Ilia Kulikov!:?* Stephen Roller? Emily Dinan?
Kyunghyun Cho'?# & Jason Weston' -
NEGATIVE DATA AUGMENTATION
Abhishek Sinha'* Kumar Ayush'* Jiaming Song!* Burak Uzkent'! Hongxia Jin?

Stefano Ermon’

Generation with Negative Examples

Proxies for negative examples have found to be useful

NEURAL TEXT BPEGENERATION WITH
UNLIKELIHOOD TRAINING

Sean Welleck':2* Ilia Kulikov!:?* Stephen Roller? Emily Dinan?
Kyunghyun Cho'?# & Jason Weston' -
NEGATIVE DATA AUGMENTATION
Abhishek Sinha'* Kumar Ayush'* Jiaming Song'* Burak Uzkent'! Hongxia Jin®

Stefano Ermon’

Q: Given high and low-quality data, can one extract negative examples?

Outline of the Talk

1. Motivation: CS and Language Generation
2. Model

3. Overview Our Definitions and Results

a. CharacterizationsI (Generation with Breadth)
Characterizations II (Stable Generation with Breadth)
Beyond Characterizations

. Learning Curves (How many samples are needed?)

o N O

Language Generation =

Learning Curves

We establish universal rates (aka learning curves) for generation with
and without breadth

Learning Curves for Generation

How many samples does one need for the generator to generate?

Learning Curves for Generation

How many samples does one need for the generator to generate?

Statistical Model of Language Generation
e Adversary picks a distribution D supported entirely on K € £

e Generator gets n i.i.d. samples from D and outputs G(S;)
e Err,(G) = 1{G(Sy) does not satisfy notion of generation }

Learning Curves for Generation

How many samples does one need for the generator to generate?

Statistical Model of Language Generation
e Adversary picks a distribution D supported entirely on K € £

e Generator gets n i.i.d. samples from D and outputs G(S;)
e Err,(G) = 1{G(Sy) does not satisfy notion of generation }

For fixed D, as n — oo, how quickly does the error Err,(G) drop?

Learning Curves for Generation

How many samples does one need for the generator to generate?

Statistical Model of Language Generation
e Adversary picks a distribution D supported entirely on K € £

e Generator gets n i.i.d. samples from D and outputs G(S;)
e Err,(G) = 1{G(Sy) does not satisfy notion of generation }

For fixed D, as n — oo, how quickly does the error Err,(G) drop?

Informal Theorem [Kalavasis, M., Velegkas'25] Error either drops

exponentially quickly or is arbitrarily slow; where the characteri-

zation has tight connections to the online model

Outline of the Talk

1. Motivation: CS and Language Generation

2. Model

3. Overview Our Definitions and Results

a. CharacterizationsI (Generation with Breadth)

b. Characterizations I (Stable Generation with Breadth)
c. Beyond Characterizations

d. Learning Curves (How many samples are needed?)

4. Overview of Some Proofs

Overview of Some Proofs =3

Angluin’s Condition

Definition. Language collection £ satisfies Angluin’s condition if:

For all L € £ there is some finite tell-tale subset T; C L such that:

For all L' # L either T} L' or L’ is not a proper subset of L

Lower Bound Construction

[Kalavasis, M., Velegkas’24] [Charikar, Pabbaraju’24]
Since £ violates Angluin’s condition, there is L* such that

for all finite subsets T'C L*, thereis Ly € £L, T C Ly and Ly C L*

Lower Bound Construction

[Kalavasis, M., Velegkas’24] [Charikar, Pabbaraju’24]
Since £ violates Angluin’s condition, there is L* such that

for all finite subsets T'C L*, thereis Ly € £L, T C Ly and Ly C L*

1. Enumerate L™ till G achieves breadth (if never, we are done)

Lower Bound Construction

[Kalavasis, M., Velegkas’24] [Charikar, Pabbaraju’24]
Since £ violates Angluin’s condition, there is L* such that

for all finite subsets T'C L*, thereis Ly € £L, T C Ly and Ly C L*

1. Enumerate L* till G achieves breadth (if never, we are done)
2. Let T be the elements enumerated

Lower Bound Construction

[Kalavasis, M., Velegkas’24] [Charikar, Pabbaraju’24]
Since £ violates Angluin’s condition, there is L* such that

for all finite subsets T'C L*, thereis Ly € £L, T C Ly and Ly C L*

1. Enumerate L* till G achieves breadth (if never, we are done)
2. Let T be the elements enumerated
3. Continue enumerating Lt until G achieves breadth (if never,

we are done) and, then, repeat from Step2

Lower Bound Construction

[Kalavasis, M., Velegkas’24] [Charikar, Pabbaraju’24]
Since £ violates Angluin’s condition, there is L* such that

for all finite subsets T'C L*, thereis Ly € £L, T C Ly and Ly C L*

1. Enumerate L* till G achieves breadth (if never, we are done)
2. Let T be the elements enumerated

3. Continue enumerating Lt until G achieves breadth (if never,

we are done) and, then, repeat from Step2

Either Step2 repeats infinitely often and we enumerate K or we

find a language on which G makes infinitely many mistakes.

Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation

(b) Fine-grained trade-offs between hallucinations and breadth

Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation
(b) Fine-grained trade-offs between hallucinations and breadth
2. What is the probability of hallucination?

Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation
(b) Fine-grained trade-offs between hallucinations and breadth

2. What is the probability of hallucination?

3. Allow generators to output multiple responses (could bypass

many impossiblity results)

Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation
(b) Fine-grained trade-offs between hallucinations and breadth

2. What is the probability of hallucination?

3. Allow generators to output multiple responses (could bypass
many impossiblity results)

4. Developing computationally efficient algorithms in more struc-

tured settings

Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation
(b) Fine-grained trade-offs between hallucinations and breadth
2. What is the probability of hallucination?
3. Allow generators to output multiple responses (could bypass
many impossiblity results)
4. Developing computationally efficient algorithms in more struc-

tured settings

5. Extraction of negative information from available data

Summary

1. TCS can contribute the right abstractions for empirical systems

> E.g., Clustering, search, algorithmic fairness, robustness...

summary

1. TCS can contribute the right abstractions for empirical systems
> E.g., Clustering, search, algorithmic fairness, robustness...
2. We establish a tension between avoiding hallucinations while

achieving breadth for existing language model “frameworks”

in a theoretical model by [Kleinberg and Mullainathan24]

summary

1. TCS can contribute the right abstractions for empirical systems

> E.g., Clustering, search, algorithmic fairness, robustness...

2. We establish a tension between avoiding hallucinations while
achieving breadth for existing language model “frameworks”

in a theoretical model by [Kleinberg and Mullainathan24]

3. How can theory guide practice?

Thank you!

Tutorial on Language Generation

At COLT 2025, this summer!

Organized with:
Moses Charikar Chirag Pabbaraju Charlotte Peale Grigoris Velegkas

Stanford Stanford Stanford Yale - Google Research

Thank you!

	Slide 1
	Slide 3: CS and Language Generation
	Slide 4: CS and Language Generation
	Slide 5: CS and Language Generation
	Slide 6: CS and Language Generation
	Slide 7: CS and Language Generation
	Slide 8: CS and Language Generation
	Slide 9: CS and Language Generation
	Slide 10: CS and Language Generation
	Slide 11: CS and Language Generation
	Slide 12: CS and Language Generation
	Slide 13: CS and Language Generation
	Slide 14: CS and Language Generation
	Slide 15: CS and Language Generation
	Slide 16: CS and Language Generation
	Slide 17: CS and Language Generation
	Slide 18: CS and Language Generation
	Slide 19: CS and Language Generation
	Slide 20: CS and Language Generation
	Slide 21: CS and Language Generation
	Slide 22: CS and Language Generation
	Slide 23: CS and Language Generation
	Slide 24: CS and Language Generation
	Slide 25: Modern Language Generators – LLMs
	Slide 26: Modern Language Generators – LLMs
	Slide 27: Modern Language Generators – LLMs
	Slide 28: Modern Language Generators – LLMs
	Slide 29: Modern Language Generators – LLMs
	Slide 30: Modern Language Generators – LLMs
	Slide 31: Modern Language Generators – LLMs
	Slide 32: Modern Language Generators – LLMs
	Slide 33: Modern Language Generators – LLMs
	Slide 34: Modern Language Generators – LLMs
	Slide 35: Modern Language Generators – LLMs
	Slide 36: Hallucinations in LLMs
	Slide 37: Hallucinations in LLMs
	Slide 38: Hallucinations in LLMs
	Slide 39: Hallucinations in LLMs
	Slide 40: Hallucinations in LLMs
	Slide 41: Hallucinations in LLMs
	Slide 42: Hallucinations in LLMs
	Slide 43
	Slide 44: A Model of Language Generation
	Slide 45: The Core Task in Language Generation
	Slide 46: The Core Task in Language Generation
	Slide 47: The Core Task in Language Generation
	Slide 48: The Core Task in Language Generation
	Slide 49: The Core Task in Language Generation
	Slide 50: The Core Task in Language Generation
	Slide 51: The Core Task in Language Generation
	Slide 52: Model of Language Identification
	Slide 53: Model of Language Identification
	Slide 54: Model of Language Identification
	Slide 55: Model of Language Identification
	Slide 56: Model of Language Identification
	Slide 57: Model of Language Identification
	Slide 58: Model of Language Identification
	Slide 59: Model of Language Identification
	Slide 60: Model of Language Identification
	Slide 61: Model of Language Identification
	Slide 62: Model of Language Identification
	Slide 63: Model of Language Identification
	Slide 64: Model of Language Identification
	Slide 65: Model of Language Generation
	Slide 66: Model of Language Generation
	Slide 67: Model of Language Generation
	Slide 68: Model of Language Generation
	Slide 70: Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]
	Slide 71: Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]
	Slide 72: Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]
	Slide 73: Example [Kleinberg-Mullainathan’ 24] [Charikar-Pabbaraju’24]
	Slide 74: Example [KM’24] [CP’24]
	Slide 75: Example [KM’24] [CP’24]
	Slide 76: Example [KM’24] [CP’24]
	Slide 77: Example [KM’24] [CP’24]
	Slide 78: Example [KM’24] [CP’24]
	Slide 79: Example [KM’24] [CP’24]
	Slide 80: Model of Language Generation
	Slide 81: Model of Language Generation
	Slide 82: Model of Language Generation
	Slide 83: Model of Language Generation
	Slide 84: Is Language Generation Feasible?
	Slide 85: Is Language Generation Feasible?
	Slide 86
	Slide 87: [KM’24]’s Generator Loses Breadth
	Slide 88: [KM’24]’s Generator Loses Breadth
	Slide 89: [KM’24]’s Generator Loses Breadth
	Slide 90: [KM’24]’s Generator Loses Breadth
	Slide 91: [KM’24]’s Generator Loses Breadth
	Slide 92: [KM’24]’s Generator Loses Breadth
	Slide 93: [KM’24]’s Generator Loses Breadth
	Slide 94: [KM’24]’s Generator Loses Breadth
	Slide 95: [KM’24]’s Generator Loses Breadth
	Slide 96: [KM’24]’s Generator Loses Breadth
	Slide 97: Language Generation
	Slide 98: Notions of Coverage or Breadth
	Slide 99: Notions of Coverage or Breadth
	Slide 100: Notions of Coverage or Breadth
	Slide 101: Notions of Coverage or Breadth
	Slide 102: Notions of Coverage or Breadth
	Slide 103: Notions of Coverage or Breadth
	Slide 104: Notions of Coverage or Breadth
	Slide 105: Notions of Coverage or Breadth
	Slide 106: Notions of Coverage or Breadth
	Slide 107: Notions of Coverage or Breadth
	Slide 108: Notions of Coverage or Breadth
	Slide 109: Notions of Coverage or Breadth
	Slide 110: Results for Breadth with no Hallucination
	Slide 111: Results for Breadth with no Hallucination
	Slide 112: Results for Breadth with no Hallucination
	Slide 113: Results for Breadth with no Hallucination
	Slide 114: Results for Breadth with no Hallucination
	Slide 115: Results for Breadth with no Hallucination
	Slide 116: Technical Vignette: Properties of Breadth
	Slide 117: Technical Vignette: Properties of Breadth
	Slide 118: Technical Vignette: Properties of Breadth
	Slide 119: Results for Breadth with some Hallucination
	Slide 120: Results for Breadth with some Hallucination
	Slide 121: Results for Breadth with some Hallucination
	Slide 124
	Slide 125: Language Generation
	Slide 126: Stability in Language Generation
	Slide 127: Stability in Language Generation
	Slide 128: Stability in Language Generation
	Slide 129: Stability in Language Generation
	Slide 130: Stability in Language Generation
	Slide 131: Stability in Language Generation
	Slide 132: Stability in Language Generation
	Slide 133: Stability in Language Generation
	Slide 134: Results with Stability
	Slide 135: Results with Stability
	Slide 136
	Slide 137: Language Generation
	Slide 138: Generation with Negative Examples
	Slide 139: Generation with Negative Examples
	Slide 140: Generation with Negative Examples
	Slide 141: Generation with Negative Examples
	Slide 142
	Slide 143: Language Generation
	Slide 144: Learning Curves for Generation
	Slide 145: Learning Curves for Generation
	Slide 146: Learning Curves for Generation
	Slide 147: Learning Curves for Generation
	Slide 148
	Slide 149: Overview of Some Proofs
	Slide 150: Angluin’s Condition
	Slide 151: Lower Bound Construction
	Slide 152: Lower Bound Construction
	Slide 153: Lower Bound Construction
	Slide 154: Lower Bound Construction
	Slide 155: Lower Bound Construction
	Slide 156: Immediate Open Questions
	Slide 157: Immediate Open Questions
	Slide 158: Immediate Open Questions
	Slide 159: Immediate Open Questions
	Slide 160: Immediate Open Questions
	Slide 161: Summary
	Slide 162: Summary
	Slide 163: Summary
	Slide 164: Tutorial on Language Generation
	Slide 165: Tutorial on Language Generation
	Slide 166: Tutorial on Language Generation
	Slide 167: Tutorial on Language Generation
	Slide 168: Tutorial on Language Generation
	Slide 169: Tutorial on Language Generation

