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CS and Language Generation g

Computer scientists have been fascinated by language acquisition
by humans and machines for decades

Language Identification in the Limit

E Mark GorLp*
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* A generation game between Betty and Claude Shannon
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CS and Language Generation

1951 Shannon

Prediction and
entropy of English

* Introduced n-grams — had tremendous impact in the 1980s!

2-gram model 5-gram model
Rhodesian Army offensive He praised love's ability

on average salary increase to use dialogue to etfect
it four networks ... an emotional response...
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* Separated grammar (syntax) and semantics
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* Separated grammar (syntax) and semantics

NOAM CHOMSKY

Colorless green ideas sleep furiously S

~ Structures

* Introduced a hierarchy of grammars
* Apart from linguistics also influenced TOC
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I wish to construct or “able to speak English” ...

to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English...
artificial intelligence... will have to learn... from implicit data.)..

learning from samples!
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* Laid the groundwork for the celebrated PAC framework
[Valiant, 1984] (Turing Award, 2010) \@'

* Contains many ideas developed much later in learning theory
- Learning from samples,
- Hypothesis class,
- Two-player online games, and even active learning!



CS and Language Generation

1951 Shannon

1957 Chomsky 1967 Gold
Prediction and  |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

* Also had a significant impact in linguists
- Do inductive biases of humans help them learn to speak?
- Do children need interaction to learn to speak?

> ...
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CS and Language Generation

1951 Shannon 1957 Chomsky 1967 Gold
Prediction and  |=»| Syntactic structures |=»| Formal language
entropy of English & formal grammars identification model

1970s - 1980s 1990s - 2000s 2010s — Present
Early conversation Wide-spread use of word-to-vec’13
systems - SHRDLU! statistical models: Attention’14

& IBM Watson RNNs... seq-seq tran.. 14

Transformers’17
GPT2 Paper’19..
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| am giving a talk about language generation. Can
you write something brief (it has to go on a slide)
and creative to demonstrate what today's language
models are capable of?

Reasoned about language model capabilities for 5 seconds >
Language Generation Magic
From code to poetry, Al weaves words into art. For example:
"In circuits' hum, a dream takes flight—
A digital muse sparks worlds of light.

Infinite stories in a single line,
Where thought and code beautifully entwine."

This is today’s language model: creativity, computation, and endless possibilities.
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Time to Reach 100M Users

Months to get to 100 million global Monthly Active Users
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Google Translate Uber Telegram Spotify Pinterest Instagram TikTok ChatGPT

Source: UBS and Yahoo Finance



Modern Language Generators — LLMs

Global investment in generative
Al has surged recently

Generative Al refers to artificial intelligence systems that can
create new output, such as images, text, or music, based on
patterns learned from existing data.

$20 billion
$15 billion
$10 billion

$5 billion

$0
2019 2020 2021 2022 2023

Source: Quid via Al Index (2024) and US Bureau of Labor Statistics (2024)



Hallucinations in LLMs

Give a brief definition of hallucinations in language models.

Reasoned about hallucinations in language models for a few seconds >

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.




Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears
plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Early days ... “simple” errors

How many Rs in the word
strawberry?

@  There are two Rs in the word "strawberry.’




Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

Google still recommends glue for your pizza
/ It’s almost like Al answers aren’t fully baked!

by Elizabeth Lopatto
Jun 11, 2024, 6:24 PM EDT
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Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Subsequently ... hallucinations in products

< (, MetaAl@ To disable Meta Al in WhatsApp, follow
/) Uama3:? these steps:

how do i make you go away 1. Open WhatsApp.

10:26 v/ 2. Tap the Settings icon (three dots on
Android or gear icon on iOS).
To end our conversation, you can simply 3. Select "Settings" or "Account" (varies by
close this chat window or tab. device).
10:26 4. Look for "Meta Al" or "Al assistant" and
toggle it off.

no, i don't want ai in whatsapp Note: Steps may vary depending on your
10:26 W device and WhatsApp version.
10:26

Source: Twitter /| X
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Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Today, hallucinations are more rare on “common tasks”

* Due to a variety of techniques:

—> chain-of-thought,
- auxiliary tools (e.g., web search), ...

*  Models still hallucinate and make errors on more complex
tasks (e.g., proofs, real world tasks, ...)




Hallucinations in LLMs

Hallucinations in language models refer to instances when the model generates text that appears

plausible but is actually fabricated, inaccurate, or not supported by the input or training data.

Today, hallucinations are more rare on “common tasks”

* Due to a variety of techniques:
—> chain-of-thought,
- auxiliary tools (e.g., web search), ...

*  Models still hallucinate and make errors on more complex
tasks (e.g., proofs, real world tasks, ...)

Question. Can hallucinations be avoided by better (but “similar”)
models/training or is fundamental change needed?




Outline of the Talk

1. Motivation: CS and Language Generation

2. Model



A Model of Language Generation &

We introduce the model of language generation by Kleinberg and
Mullainathan (2024), which builds on [Gold’67] and [ Angluin’79]

Language Generation in the Limit

Jon Kleinberg Sendhil Mullainathan

Departments of Computer Science Booth School of Business
and Information Sciene University of Chicago
Cornell University Chicago IL

Ithaca NY
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The Core Task in Language Generation

Language Generation [Kleinberg-Mullainathan, 2024]
Given text from unknown language, produce valid and unseen text

Simplifications
* Do not need to learn all of the language, okay to learn a subset
* Itis a prompt-less model — can be extended

@ Generator’s output G
Target language K

' Training data S
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Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
sk 2k

. . . . . o*
3. Learner wins if guesses are eventually right: ..., 7, 1%, 1%,1%,...

Adversary has to present a complete enumeration

Example: K =N, 2,4,6,..., 1,2,3,... and 2,4,6,...,1,2,3,...
% v o
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Model of Language Identification

Language Identification in the Limit [Gold, 1967]

Game between adversary @ and learner g
1. Adversary picks target K = L~

2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) learner guesses target-index 1;
o

3. Learner wins if guesses are eventually right: ..., i, 1%, i

Learners access:
Isw e L;? Is L; C L]?

Membership Query ® Subset Query @ V]
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Model of Language Ceneration

Language Generation in the Limit [Kleinberg-Mullainathan’24]
e Domain X, e.g., {a-z, A-Z}" or N
e Collection of languages £ = {L1,L,,...}

Game between adversary @ and generator =

1. Adversary picks target K = L;j»
2. Roundst=1,2,3,...,

(a) adversary shows example x; € K, and
(b) generator outputs unseen string g;

3. Generator wins if guesses are eventually in K: K > g¢, 9141, ...

after some finite time t < oo
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Model of Language Generation

Abstractly captures many aspects of LLM training =5
* No feedback tor generator

* Generator tries to generate unseen strings

* Generator cannot ask if w € K

Details abstracted away: computation, next-token-prediction, ...

These are important ...[Bhattamishra, Ahuja, and Goyal’20] [Sanford, Hsu,
Telgarsky’23] [Peng, Narayanan, and Papadimitriou’24] [Chen, Peng, and Wu'24]...



Model of Language Generation

Language Generation [KM"24]. Generator wins if guesses are

eventually in K: K 5 g¢,g¢+1,... after some finite time ¢ < o0

Abstractly captures many aspects of LLM training =5
* No feedback tor generator

* Generator tries to generate unseen strings

* Generator cannot ask if w € K

Question. Even in an idealized model, can hallucinations be avoided

with better models/training or is fundamental change needed?
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Is Language Generation Feasible?

Informal Theorem [Gold'67, Angluin’79, '80] Almost all inter-

esting language collections £ are not identifiable

Even reqular languages are non-identifiable... simpler than English

Informal Theorem [Kleinberg-Mullainathan’24]| All (countable)

language collections £ are generatable



Outline of the Talk

1. Motivation: CS and Language Generation
2. Model

3. Overview Our Definitions and Results

a. _ (Generation with Breadth)

b. Characterizations II (Stable Generation with Breadth)
c. Beyond Characterizations
d. Learning Curves

4. Overview of Some Proofs
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[KM’241’s Generator Loses Breadth

[KM"24]’s Generator: Construct (dynamic) list of critical languages
(£) (£) (t)
C,'26G7"2---2C7 2.,

1

> In the t-th step, generate from Cft)

Lemma. K enters the critical list at finite ty < o and never leaves

(t)

> For t > tg, generator outputs from C,” C K (no hallucinations!)
> [KM'24]’s algorithm generates from a “decreasing” subset of K

Adaptation of our main question [KM24]: Can a generator avoid

hallucinations while maintaining some notion of “breadth”?



Language Generation =

Characterizations I

* We introduce several notions of breadth
* We show that achieving breadth + no hallucinations is
impossible for most language collections
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Notions of Coverage or Breadth

Let generator G be a mapping from training data to subsets of

the domain, i.e., G(S) is output-set of G trained on S

Exact Breadth Approximate Breadth Infinite Coverage
K\ G(S)| < o KN G(S)| = o0

Consider K =N, G(S)=1{i,i+1,...} and G(S)=1{2,4,6,...}
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Results for Breadth with no Hallucination

Infinite coverage <= Generation <= All countable collections
[KM’24]

Not satisfied even, e.g., by regular languages

Approximate Breadth <= Weak Angluin’s Condition [KMV24]

Exact Breadth <= Angluin’s Condition [Angluin,1980]

Main Takeaway [Kalavasis, M., Velegkas'24 and "25]. For most
interesting language collections, LLMs cannot avoid
hallucination while achieving any of these notions of breadth
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Technical Vignette: Properties of Breadth

Definitions. A relation P satisfies:
> Uniqueness if (G, L), (G,L") € P,then L = L'

> Finite non-uniqueness if (G, L), (G,L") € P, then |[LAL'| < o0

Fact. Exact breadth satisfies uniqueness

Fact. Approximate breadth satisties finite non-uniqueness

Theorem. [Kalavasis, M., Velegkas, 24] Consider collection £.

> If P is unique and £ violates Angluin’s condition, or

> If P is finite-non-ungiue and £ violates weak Angluin’s condition,

Then, no generator can satisfy P in the limit
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Results for Breadth with some Hallucination

No Hallucinations Finite Hallucinations

|G(S)\K] =0 | GS)\K| < oo
Zero Missing Elements Angluin’s Condition Weak Angluin’s Condition
Lng:80] [KMV 24b, CP 24]
| K\G(S)| =0 (i.e., Exact Breadth) ’
Finite Missing Elements Weas Anginis Condition Weak Angluin’s Condition

[KMYV 24b, CP 24]

(i.e., Approximate Breadth) [KMV 24b, CP 24]

| K\G(S))| < 0

Infinite Present Elements

All Countable Collections All Countable Collections
| KN G(S,) | =

Infinite Hallucinations

| GIS)\K| = o0

All Countable Collections

All Countable Collections

All Countable Collections

Question. Can one develop a more fine-grained characterization?
Progress. [Kleinberg and Wei, 2025] and [Peale, Raman, Reingold, 2025]
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Language Generation =

Characterizations II

* We introduce stable generation
* Related to whether the learner can recognize that it has learnt?
* Requiring stability makes language generation much harder
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Stability in Language Generation

[KM’24]’s and our generator change output set infinitely often

A e— .
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Can generator’s stabilize their outputs?
If the generator “knows” it has learnt, then it can stabilize.

Stability. A generator is said to achieve stability if for any target K

and its enumeration, there is a finite t < oo, after which G(S;) =
G(Sy) forall t >t
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Results with Stability

Zero Missing Elements

|K\G(S))| = 0

Finite Missing Elements

| K\G(S,)| < oo

Infinite Present Elements

|KNG(S,)| =

No Hallucinations Finite Hallucinations

|G(S)O\K| =0 | GIS)\K| < o0

Angluin’s Condition
[Ang 80]
(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24]

Angluin’s Condition
[Ang 80]

Weak Angluin’s Condition

(i.e., Approximate Breadth) [KMV 24b, CP 24]

Characterization ?

(Not all countable Characterization ?
collections)

Infinite Hallucinations

| GS)\K| = o0

All Countable Collections

All Countable Collections
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Language Generation =

Beyond Characterizations

Providing the generator with negative examples, enables achieving
breadth without hallucinations!
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Generation with Negative Examples

Informal Theorem [Gold’67][Kalavasis, M., Velegkas"25] Consider

a variation of language generation where adversary enumerates

both elements in K and elements outside of K (negative examples).

Then, all countable collections £ are generatable with exact breadth.

Insights into LLM training

* Perhaps a principled explanation why RLHF is usetul

* Does this suggest including negative information in pre-
training would be useful?
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Proxies for negative examples have found to be useful

NEURAL TEXT BPEGENERATION WITH
UNLIKELIHOOD TRAINING

Sean Welleck':2* Ilia Kulikov!:?* Stephen Roller? Emily Dinan?
Kyunghyun Cho'?# & Jason Weston' -
NEGATIVE DATA AUGMENTATION
Abhishek Sinha'* Kumar Ayush'* Jiaming Song'* Burak Uzkent'!  Hongxia Jin®

Stefano Ermon’

Q: Given high and low-quality data, can one extract negative examples?
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Language Generation =

Learning Curves

We establish universal rates (aka learning curves) for generation with
and without breadth
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Learning Curves for Generation

How many samples does one need for the generator to generate?

Statistical Model of Language Generation
e Adversary picks a distribution D supported entirely on K € £

e Generator gets n i.i.d. samples from D and outputs G(S;)
e Err,(G) = 1{G(Sy) does not satisfy notion of generation }

For fixed D, as n — oo, how quickly does the error Err,(G) drop?

Informal Theorem [Kalavasis, M., Velegkas'25] Error either drops

exponentially quickly or is arbitrarily slow; where the characteri-

zation has tight connections to the online model
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Angluin’s Condition

Definition. Language collection £ satisfies Angluin’s condition if:

For all L € £ there is some finite tell-tale subset T; C L such that:

For all L' # L either T} L' or L’ is not a proper subset of L
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Lower Bound Construction

[Kalavasis, M., Velegkas’24] [Charikar, Pabbaraju’24]
Since £ violates Angluin’s condition, there is L* such that

for all finite subsets T'C L*, thereis Ly € £L, T C Ly and Ly C L*

1. Enumerate L* till G achieves breadth (if never, we are done)
2. Let T be the elements enumerated

3. Continue enumerating Lt until G achieves breadth (if never,

we are done) and, then, repeat from Step2

Either Step2 repeats infinitely often and we enumerate K or we

find a language on which G makes infinitely many mistakes.
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Immediate Open Questions

1. Complete characterizations for the following

(a) Stable Generation
(b) Fine-grained trade-offs between hallucinations and breadth
2. What is the probability of hallucination?
3. Allow generators to output multiple responses (could bypass
many impossiblity results)
4. Developing computationally efficient algorithms in more struc-

tured settings

5. Extraction of negative information from available data
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summary

1. TCS can contribute the right abstractions for empirical systems

> E.g., Clustering, search, algorithmic fairness, robustness...

2. We establish a tension between avoiding hallucinations while
achieving breadth for existing language model “frameworks”

in a theoretical model by [Kleinberg and Mullainathan24]

3. How can theory guide practice?

Thank you!



Tutorial on Language Generation

At COLT 2025, this summer!

Organized with:
Moses Charikar Chirag Pabbaraju Charlotte Peale Grigoris Velegkas

Stanford Stanford Stanford Yale - Google Research

Thank you!
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