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CS and Language Generation

Computer scientists have been fascinated by language acquisition 
by humans and machines for decades
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Prediction and 
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• A generation game between Betty and Claude Shannon
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CS and Language Generation

1951 Shannon
Prediction and 

entropy of English 

• Introduced n-grams – had tremendous impact in the 1980s!

5-gram model 
He praised love's ability 
to use dialogue to effect 
an emotional response… 

2-gram model 
Rhodesian Army offensive 
on average salary increase 
it four networks … 
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1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

• Separated grammar (syntax) and semantics 

• Introduced a hierarchy of grammars
• Apart from linguistics also influenced TOC 
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I wish to construct a precise model for “able to speak English”… 
   to investigate theoretically how it can be achieved artificially

Since we cannot explicitly write down the rules of English…  
 artificial intelligence… will have to learn… from implicit data…

learning from samples!
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1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

1967 Gold
Formal language 

identification model 

• Laid the groundwork for the celebrated PAC framework 
[Valiant, 1984] (Turing Award, 2010)

• Contains many ideas developed much later in learning theory
→ Learning from samples,
→ Hypothesis class, 
→ Two-player online games, and even active learning!



CS and Language Generation

1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

1967 Gold
Formal language 

identification model 

• Also had a significant impact in linguists
→ Do inductive biases of humans help them learn to speak?
→ Do children need interaction to learn to speak?
→ …
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CS and Language Generation

1951 Shannon
Prediction and 

entropy of English 

1957 Chomsky
Syntactic structures 
& formal grammars

1967 Gold
Formal language 

identification model 

1970s - 1980s 
Early conversation 
systems - SHRDLU!

& IBM Watson

1990s - 2000s
Wide-spread use of 
statistical models: 

RNNs…

2010s – Present
• word-to-vec’13
• Attention’14
• seq-seq tran..’14
• Transformers’17
• GPT2 Paper’19..
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Modern Language Generators – LLMs

Source:  Quid via AI Index (2024) and US Bureau of Labor Statistics (2024)
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Early days … “simple” errors 
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Hallucinations in LLMs 

Today, hallucinations are more rare on “common tasks”

• Due to a variety of techniques:
→ chain-of-thought, 
→ auxiliary tools (e.g., web search), … 

• Models still hallucinate and make errors on more complex 
tasks (e.g., proofs, real world tasks, …)

Question. Can hallucinations be avoided by better (but “similar”) 
models/training or is fundamental change needed?



1. Motivation: CS and Language Generation

2. Model 

3. Overview Our Definitions and Results

a. Characterizations I    (Generation with Breadth)

b. Characterizations II   (Stable Generation with Breadth)

c. Beyond Characterizations

d. Learning Curves    

4. Overview of Some Proofs

Outline of the Talk



A Model of Language Generation
We introduce the model of language generation by Kleinberg and 

Mullainathan (2024), which builds on [Gold’67] and [Angluin’79]
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Language Identification in the Limit [Gold, 1967]

Game between adversary      and learner

Learners access:

Membership Query Subset Query
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Model of Language Generation

Abstractly captures many aspects of LLM training
• No feedback for generator
• Generator tries to generate unseen strings
• Generator cannot ask if w ∈ K

Details abstracted away: computation, next-token-prediction, … 
These are important …[Bhattamishra, Ahuja, and Goyal’20] [Sanford, Hsu, 

Telgarsky’23] [Peng, Narayanan, and Papadimitriou’24] [Chen, Peng, and Wu’24]… 



Model of Language Generation

Question. Even in an idealized model, can hallucinations be avoided 
with better models/training or is fundamental change needed?

Abstractly captures many aspects of LLM training
• No feedback for generator
• Generator tries to generate unseen strings
• Generator cannot ask if w ∈ K
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[KM’24]’s Generator Loses Breadth

[KM’24]’s Generator: Construct (dynamic) list of critical languages 

Lemma. K enters the critical list at finite tK < ∞ and never leaves 

Adaptation of our main question [KM24]: Can a generator avoid 
hallucinations while maintaining some notion of “breadth”?



Language Generation

• We introduce several notions of breadth 
• We show that achieving breadth + no hallucinations is 

impossible for most language collections

Characterizations I 
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Results for Breadth with no Hallucination

Main Takeaway [Kalavasis, M., Velegkas’24 and ’25]. For most 
interesting language collections, LLMs cannot avoid 
hallucination while achieving any of these notions of breadth

[KM’24]

Not satisfied even, e.g., by regular languages
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Language Generation

• We introduce stable generation 
• Related to whether the learner can recognize that it has learnt?
• Requiring stability makes language generation much harder

Characterizations II
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Language Generation

Providing the generator with negative examples, enables achieving 
breadth without hallucinations!

Beyond Characterizations



Generation with Negative Examples



Generation with Negative Examples

Insights into LLM training
• Perhaps a principled explanation why RLHF is useful
• Does this suggest including negative information in pre-

training would be useful? 
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Generation with Negative Examples

Proxies for negative examples have found to be useful

Q: Given high and low-quality data, can one extract negative examples?
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Language Generation

We establish universal rates (aka learning curves) for generation with 
and without breadth

Learning Curves



Learning Curves for Generation
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Overview of Some Proofs



Angluin’s Condition
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Tutorial on Language Generation

Grigoris Velegkas
Yale →Google Research

At COLT 2025, this summer! 

Organized with:

Thank you!

Charlotte Peale
Stanford

Chirag Pabbaraju
Stanford

Moses Charikar
Stanford
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