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LANGUAGE GENERATION

Given a finite set of training examples from some 

unknown language, produce new strings from the 

language that don’t already appear in the training data

Language 

Model

“Inbox overflows,

each ping a quiet demand —

I mute the world now.”

“One text left unread,

not from lack of attention —

I just need some peace.”

“Cracked phone screen again,

a spiderweb of mistakes —

I still swipe through it.”



LANGUAGE GENERATION

Given a finite set of training examples from some 

unknown language, produce new strings from the 

language that don’t already appear in the training data

Language 

Model

𝒙𝟏

𝒙𝒏

𝒛



LANGUAGE GENERATION

Given a finite set of training examples from some 

unknown language, produce new strings from the 

language that don’t already appear in the training data

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒙𝒏

𝐿

No structural assumptions 

…  

Intractable?



LANGUAGE IDENTIFICATION IN THE LIMIT

• Known collection 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿 = 𝐿𝑧 , starts enumerating it 

in an order of their choosing

𝑥1,  𝑥2 ,  𝑥3 ,  𝑥4 ,  𝑥5 , . . . . . . . 

• At each time step 𝑡, algorithm makes a guess of the index of the 

language that is being enumerated

• Identifies in the limit if beyond some large enough 𝑡⋆, all guesses correct

𝑥1

𝐿2

𝑥2

𝐿2

𝑥3

𝐿10

𝑥4

𝐿21

𝑥𝑡⋆ 

𝐿70

𝑥𝑡⋆+1 

𝐿70

chooses 𝐿70

(Gold ‘67)

Every 𝑥 ∈ 𝐿 appears at some time, 

repeats allowed



• Example: 𝒞 = {𝐿even integers, 𝐿all integers}

• Algorithm keeps guessing 𝐿even integers up until the time it sees an odd 

integer for the first time, at which point it switches to 𝐿all integers

• If adversary chose 𝐿even integers, algorithm is correct from 𝑡 = 1

• Otherwise, adversary must reveal an odd integer: correct from that point

• Hopelessly hard for essentially any interesting infinite collection (Gold ’67)

• Theorem (Angluin ‘80): Collection identifiable iff it satisfies Angluin’s 

condition…. (very restrictive)

LANGUAGE IDENTIFICATION IN THE LIMIT



𝐿∞ = {… , −3, −2, −1, 0, 1, 2, 3, … } 
𝐿≥𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … }

HARD INSTANCE FOR IDENTIFICATION

0 1 2 3 4-4 -3 -2 -1
𝐿2

𝐿1

𝐿0

𝐿−1

𝐿∞



HARD INSTANCE FOR IDENTIFICATION

1 2 3 4

Valid enumeration of 𝐿≥1; at some finite time 𝑡1 (and beyond), algorithm must guess 𝐿≥1

𝑡1

: 𝐿≥1! 

0

Valid enumeration of 𝐿≥0; at some finite time 𝑡2 (and beyond), algorithm must guess 𝐿≥0

𝑡2

: 𝐿≥0! 

-1

Valid enumeration of 𝐿≥−1; at some finite time 𝑡3 (and beyond), algorithm must guess 𝐿≥−1

𝑡3

: 𝐿≥−1! 

-2

Adversary repeats this game, produces a valid enumeration of 𝐿∞

Infinite sequence 𝑡1 < 𝑡2 < 𝑡3 < ⋯ where algorithm makes a mistake 



LANGUAGE GENERATION IN THE LIMIT

• 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿𝑧 , starts enumerating it in an 

order of their choosing

𝑥1,  𝑥2 ,  𝑥3 ,  𝑥4 ,  𝑥5 , . . . . . . . 

• At each time step 𝑡, algorithm generates a string 𝑧𝑡

• Generates in the limit if beyond some large enough 𝑡⋆, all strings 

generated are new and in 𝐿𝑧

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆ 

𝑧𝑡⋆

𝑥𝑡⋆+1 

chooses 𝐿70

𝑧𝑡⋆+1
new, ∈ 𝐿70 new, ∈ 𝐿70

(Kleinberg-Mullainathan’24)



• Example: 𝒞 = {𝐿even integers, 𝐿all integers}

• At each step, algorithm generates a new even integer…

• Generates correctly from 𝑡 = 1 , no matter the target language…

However, like identification, is generation in the limit also possible only for 

such simple collections?

LANGUAGE GENERATION IN THE LIMIT



𝐿∞ = {… , −3, −2, −1, 0, 1, 2, 3, … } 
𝐿≥𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … }

HARD INSTANCE FOR IDENTIFICATION

0 1 2 3 4-4 -3 -2 -1
𝐿2

𝐿1

𝐿0

𝐿−1

𝐿∞

At each step, generate a 

number larger than any 

number seen as yet…



LANGUAGE GENERATION IN THE LIMIT

• Theorem (Kleinberg-Mullainathan ’24):  Every countable 

collection of languages is generatable in the limit! 

• Includes finite, regular, context-free/sensitive, recursively 

enumerable, …. 

• Recall that identifiability failed even for extremely simple 

collections… 



LANGUAGE GENERATION IN THE LIMIT

• Known collection 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿𝑧, starts enumerating it 

       𝑥1,  𝑥2 ,  𝑥3 ,  𝑥4 ,  𝑥5 , . . . . . . . 

• At each time step 𝑡, algorithm generates a string 𝑧𝑡

• Generates in the limit if beyond some large enough 𝑡⋆, all strings 

generated are new and in 𝐿𝑧

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆ 

𝑧𝑡⋆

𝑥𝑡⋆+1 

chooses 𝐿70

𝑧𝑡⋆+1
new, ∈ 𝐿70 new, ∈ 𝐿70

𝑡⋆ can depend on target 

𝐿𝑧 as well as 

enumeration order! 



LANGUAGE GENERATION IN THE LIMIT

• Limitation: Definition allows that the time step 𝑡⋆ beyond which algorithm 

generates validly can depend on the enumeration order!

• Example:  Suppose 𝒞 = {𝐿1, 𝐿2} 

𝐿1 = {… , −3, −2, −1, 1, 2, 3, … }

𝐿2 =  {0, 1, 2, 3, 4, … } 

• Suppose 𝐿2 is the target language, but adversary enumerates it as

1, 2, 3, 4, 5, 6, …

• Natural algorithm: generate from first consistent language in collection

• Until adversary shows 0, can keep generating negative numbers from 𝐿1 

Kleinberg-Mullainathan’s 

algorithm also faces this 

issue 



NON-UNIFORM GENERATION IN THE 
LIMIT

• 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿𝑧 , starts enumerating it in an order 

of their choosing

𝑥1,  𝑥2 ,  𝑥3 ,  𝑥4 ,  𝑥5 , . . . . . . . 

• At each time step 𝑡, algorithm generates a string 𝑧𝑡

• Non-uniformly generates in the limit if the moment the algorithm sees 𝑡⋆ =
𝑡⋆(𝒞, 𝐿𝑧) distinct strings , all strings generated thereafter are new and in 𝐿𝑧

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆ 

𝑧𝑡⋆

𝑥𝑡⋆+1 

chooses 𝐿70

𝑧𝑡⋆+1
new, ∈ 𝐿70 new, ∈ 𝐿70

𝑥1
′ 𝑥𝑡⋆

′𝑥4
′𝑥2

′ 𝑥3
′ 𝑥𝑡⋆+1

′

𝑧𝑡⋆
′ 𝑧𝑡⋆+1

′
𝑧1

′ 𝑧4
′𝑧2

′ 𝑧3
′

(Li, Raman, Tewari ‘24)



NON-UNIFORM GENERATION IN THE LIMIT

• Open Question (Li, Raman, Tewari ‘24): Is 

every countable collection of languages non-

uniformly generatable in the limit?

• Theorem (Charikar, P ‘24): Yes! 

Countable language collections

Generatable

Non-uniformly 

generatable?

Non-uniformly 

generatable

also concurrently resolved by Li, Raman, Tewari



NON-UNIFORM GENERATION ALGORITHM

Algorithm: 

1) At time step 𝑡, consider the languages

𝐿1, 𝐿2, … , 𝐿𝑡

2) Say 𝐿𝑖 is the first language consistent with the 

input seen so far; initialize 𝐼𝑡 = 𝐿𝑖

3) For any subsequent language 𝐿𝑗 that is also 

consistent with the input:

       If |𝐼𝑡 ∩ 𝐿𝑗| = ∞, update 𝐼𝑡 = 𝐼𝑡 ∩ 𝐿𝑗

       Else move on leaving 𝐼𝑡 unaffected

4) Generate arbitrary new string from 𝐼𝑡

Example:

Suppose 𝑆5 =  {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}

Therefore, at 𝑡 = 5, algorithm 

generates a string from 𝐼5 = 𝐿1 ∩ 𝐿4

𝐿3𝐿2 𝐿4 𝐿5𝐿1

𝑆 5
⊆

𝐼5 = 𝐿1

𝑆 5
⊈

 

𝐼5 = 𝐿1

𝑆 5
⊆

|𝐼5 ∩ 𝐿3| < ∞
     𝐼5 = 𝐿1

𝑆 5
⊆

|𝐼5 ∩ 𝐿4| = ∞
    𝐼5 = 𝐿1 ∩ 𝐿4

𝑆 5
⊈

 

𝐼5 = 𝐿1 ∩ 𝐿4



NON-UNIFORM GENERATION ALGORITHM

Algorithm: 

1) At time step 𝑡, consider the languages

𝐿1, 𝐿2, … , 𝐿𝑡

2) Say 𝐿𝑖 is the first language consistent with the 

input seen so far; initialize 𝐼𝑡 = 𝐿𝑖

3) For any subsequent language 𝐿𝑗 that is also 

consistent with the input:

       If |𝐼𝑡 ∩ 𝐿𝑗| = ∞, update 𝐼𝑡 = 𝐼𝑡 ∩ 𝐿𝑗

       Else move on leaving 𝐼𝑡 unaffected

4) Generate arbitrary new string from 𝐼𝑡

Invariant: 𝐼𝑡 from which string is 

generated is always infinite

Suppose target language is 𝐿𝑧

{𝐿1, 𝐿2, … 𝐿𝑧 , … }

Observation: 

1) 𝐿𝑧 is always consistent with input 

2) Beyond 𝑡 = 𝑧, 𝐿𝑧 is always under 

consideration

Only want that when 𝐿𝑧 is 

encountered, 𝐼𝑡 ∩ 𝐿𝑧 = ∞



NON-UNIFORM GENERATION ALGORITHM

Key Definition (Non-uniform Complexity):

For any language 𝐿𝑖 ∈ 𝒞, define its non-uniform complexity 𝑚(𝐿𝑖) as follows:

𝑚 𝐿𝑖 = maximum over subsets of {𝐿1, … , 𝐿𝑖} that contain 𝐿𝑖 and have finite 

intersection

Example:

Suppose 𝐿3 ∩ 𝐿1 = ∞, 𝐿3 ∩ 𝐿2 = 100, 𝐿3 ∩ 𝐿2 ∩ 𝐿1 = 95

Then 𝑚 𝐿3 = max 𝐿3 ∩ 𝐿2 , |𝐿3 ∩ 𝐿2 ∩ 𝐿1| = max 100, 95 = 100

𝐿3𝐿2 𝐿4 𝐿5𝐿1



𝑚 𝐿𝑖 = maximum over subsets of {𝐿1, … , 𝐿𝑖} that contain 𝐿𝑖 and have finite intersection

Algorithm: 

1) At time step 𝑡, consider the languages

𝐿1, 𝐿2, … , 𝐿𝑡

2) Say 𝐿𝑖 is the first language consistent with the 

input seen so far; initialize 𝐼𝑡 = 𝐿𝑖

3) For any subsequent language 𝐿𝑗 that is also 

consistent with the input:

       If |𝐼𝑡 ∩ 𝐿𝑗| = ∞, update 𝐼𝑡 = 𝐼𝑡 ∩ 𝐿𝑗

       Else move on leaving 𝐼𝑡 unaffected

4) Generate arbitrary new string from 𝐼𝑡

Claim: Consider 𝒞 = {𝐿1, 𝐿2, … 𝐿𝑧 , … }

𝑡⋆ 𝐿𝑧 , 𝒞 = max(𝑧, 𝑚 𝐿𝑧 + 1)

Proof:

Consider 𝑡 satisfying 𝑆𝑡 ≥ 𝑡⋆(𝐿𝑧 , 𝒞)

𝐿𝑧 under consideration since 𝑡 ≥ 𝑧

Suppose 𝐿𝑧 did not get added to 𝐼𝑡

But 𝑆𝑡 ≥ 𝑚 𝐿𝑧 + 1 ⟹⟸

𝐿𝑧. . . . . . . . . . 𝐿𝑡𝐿1

𝐼𝑡 ∩ 𝐿𝑧 = |𝐿1 ∩ 𝐿10 ∩ ⋯ ∩ 𝐿𝑧−1 ∩ 𝐿𝑧| < ∞

𝑆 𝑡
⊆

𝑆 𝑡
⊆

𝑆 𝑡
⊆

𝑆 𝑡
⊆

𝑆𝑡 ≤

non-uniform guarantee! 



NON-UNIFORM GENERATION WITH 
MEMBERSHIP QUERIES

• Our non-uniform generation algorithm requires access to an oracle that, 

given any finite subcollection of languages, responds with whether the 

intersection of languages in the subcollection is finite or not

• Kleinberg-Mullainathan’s algorithm requires only a membership query 

oracle, that answers queries of the form “is 𝑧 in 𝐿𝑖?”

• Can we get non-uniform generation for all countable collections with 

only membership queries?

• Theorem (Charikar, P ‘24):  Any algorithm that non-uniformly generates 

from all collections of size 2 cannot be solely implemented with 

membership queries

“non-uniform generation provably requires stronger oracles”



KLEINBERG-MULLAINATHAN’S ALGORITHM

Property:  Lack of breadth

1) Algorithm starts off by producing invalid 

strings for a while

2) Eventually, it refines its hallucinations, and 

produces only valid strings thereafter

3) As 𝑡 increases, algorithm potentially 

generates from an increasingly small subset 

of 𝐿𝑧 

𝑧1

𝐿𝑧

𝑧2

𝑧3

𝑧4

𝑧𝑡⋆

𝑧5𝑡⋆

𝑧100𝑡⋆

𝑧𝑡⋆+1

𝑧𝑡⋆+1



VALIDITY - BREADTH TRADEOFF

Mode Collapse in GANs

Is the validity-breadth tradeoff fundamental to language generation in the limit? 

Or can we come up with other algorithms that get the best of both worlds? 



EXHAUSTIVE GENERATION

• Recall that the input eventually contains every string from the target 

language

• What if we can terminate the input at any time, and ask the generating 

algorithm to go into “generate-only” mode?

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡 

chooses 𝐿

𝑧𝑡

input terminated!

generate-only mode

𝑧𝑡+1 𝑧𝑡+2

𝑍<𝑡 𝑍≥𝑡

1) Want 𝑍<𝑡 ∪ 𝑍≥𝑡 to cover the target language  2) Want 𝑍≥𝑡 to be valid strings 



EXHAUSTIVE GENERATION

• Exhaustively generates in the limit if for all 𝑡 beyond some large enough 𝑡⋆

1) (Validity)   𝑍≥𝑡 ∖ 𝐿 < ∞

2) (Breadth)  𝑆𝑡 ∪ 𝑍<𝑡 ∪ 𝑍≥𝑡  ⊇ 𝐿

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡 

chooses 𝐿

𝑧𝑡 𝑧𝑡+1 𝑧𝑡+2

𝑍<𝑡 𝑍≥𝑡

“stops hallucinating eventually”

“covers all of 𝐾 eventually”

input terminated!

generate-only mode

𝑆𝑡



EXHAUSTIVE GENERATION

• Recall: Every countable collection can be generated in the limit…

• Theorem (Charikar, P ’24): There exists a simple countable collection that 

cannot be exhaustively generated in the limit

• Indicates that validity-breadth tradeoff is real in a formal sense for language 

generation in the limit

• Adds to growing evidence in literature that language models with desirable 

properties must hallucinate (Kalai-Vempala ‘24, Xu-Jain-Kankanalli ‘24, etc.)



𝐿∞ = {… , −3, −2, −1, 0, 1, 2, 3, … } 
𝐿≥𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … }

HARD INSTANCE FOR IDENTIFICATION

0 1 2 3 4-4 -3 -2 -1
𝐿2

𝐿1

𝐿0

𝐿−1

𝐿∞



EXHAUSTIVE GENERATION LOWER 
BOUND

1 2 3 4

Valid enumeration of 𝐿≥1; at some finite time 𝑡1, algorithm must exhaustively generate 𝐿≥1

𝑡1

|𝑍≥𝑡1
∖ 𝐿≥1| < ∞

0

Valid enumeration of 𝐿≥0; at some finite time 𝑡2, algorithm must exhaustively generate 𝐿≥0

𝑡2

|𝑍≥𝑡2
∖ 𝐿≥0| < ∞

-1

Valid enumeration of 𝐿≥−1; at some finite time 𝑡3, algorithm must exhaustively generate 𝐿≥−1

𝑡3

|𝑍≥𝑡3
∖ 𝐿≥−1| < ∞

-2

There must exist 𝑡∞ such that for 𝑡 ≥ 𝑡∞,    𝑍<𝑡 ∪ 𝑆𝑡 ∪ 𝑍≥𝑡  ⊇ 𝐿∞

Infinite sequence 𝑡1 < 𝑡2 < 𝑡3 < ⋯ such that at 𝑡𝑖 ,     𝑍≥𝑡𝑖
∖ 𝐿≥2−𝑖 < ∞

However, adversary has produced a valid enumeration of 𝐿∞



EXHAUSTIVE GENERATION 
CHARACTERIZATION

• However, identifiability ≇ exhaustive generation!

• Example: 𝐿∞ = all integers

𝐿−𝑖 = all integers except 𝑖

• Algorithm: simply start generating 0, −1, 1, −2, 2, −3, 3, −4, 4, . . . . .

• Recall: A collection is identifiable iff it satisfies Angluin’s condition..

• Theorem (Charikar, P ’24): A collection is exhaustively generatable iff it 

satisfies a weaker version of Angluin’s condition

• Precise characterization of exhaustive generation! 

parallel work by Kalavasis-Mehrotra-Velegkas ‘24 also proposes a definition of breadth; stronger than ours; closer to identifiability



GENERATION WITH FEEDBACK

• What if at each step 𝑡, algorithm can ask “does 𝑦𝑡 belong to the target language?”

• We characterize this setting with an abstract complexity parameter of the collection!

𝑥1

𝑦1in 𝐿?

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆ 

𝑧𝑡⋆

𝑥𝑡⋆+1 

chooses 𝐿

𝑧𝑡⋆+1
new, ∈ 𝐿 new, ∈ 𝐿

No!

𝑧1

𝑦2in 𝐿?

No!

𝑦3in 𝐿?

Yes!

𝑦4in 𝐿?

No!

𝑦𝑡⋆ in 𝐿?

Yes!

𝑦𝑡⋆+1in 𝐿?

No!



SUMMARY

• All countable collections can be non-uniformly generated!

• Lower bound for non-uniform generation with only membership queries!

• Exhaustive Generation: Validity-Breadth tradeoff necessary in generation

• Characterization of Exhaustive Generation

• Characterization of Generation with Feedback

Going forward . . . .

• What if input strings have noise? Noise models for generation [Raman, Raman ‘25]

• Notions of qualitative diversity in generated strings [Peale, Raman, Reingold ‘25]
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