EXPLORING FACETS OF LANGUAGE
GENERATION IN THE LIMIT

Chirag Pabbaraju
Stanford University

Joint work with
Moses Charikar

LANGUAGE GENERATION

Given a finite set of training examples from some
unknown language, produce new strings from the
language that don’t already appear in the training data

“Inbox overflows,
each ping a quiet demand —
| mute the world now.”

—

“One text left unread,
not from lack of attention —
| just need some peace.”

-

_

Language
Model

~

%

—

“Cracked phone screen again,
a spiderweb of mistakes —
| still swipe through it.”

LANGUAGE GENERATION

Given a finite set of training examples from some
unknown language, produce new strings from the
language that don’t already appear in the training data

X1 4 I

— Language — P

Model

o /

LANGUAGE GENERATION

Given a finite set of training examples from some
unknown language, produce new strings from the
language that don’t already appear in the training data

No structural assumptions

. @

Intractable?

LANGUAGE IDENTIFICATION IN THE LIMIT

(Gold 67)

Known collection C = {L{,L,, L, ... }

Adversary chooses some target language L = L,, starts enumerating it

in an order of their choosing Every x € L appears at some time,
X1) X2, X3, Xg) X5peuernrs repeats allowed

At each time step t, algorithm makes a guess of the index of the
language that is being enumerated

|dentifies in the limit if beyond some large enough t*, all guesses correct

chooses L

=
N
h
N
c~
[
o
h
[\
—
c~
N
=
=
N
o

LANGUAGE IDENTIFICATION IN THE LIMIT

ExamPle: C = {Leven integers»Lall integers}

Algorithm keeps guessing Leyen integers UP Until the time it sees an odd
integer for the first time, at which point it switches to L, integers

If adversary chose Leyen integers algorithm is correct from ¢ = 1
Otherwise, adversary must reveal an odd integer: correct from that point

Hopelessly hard for essentially any interesting infinite collection (Gold °67) @

Theorem (Angluin ‘80): Collection identifiable iff it satisfies Angluin’s
condition.... (very restrictive)

HARD

INSTANCE FOR IDENTIFICATION

Lo,=1{..,-3,-2,-1,0123,..}
Ly, ={i,i+1,i+2,i+3,.. }

N

O
O
O

@

- @

> @

w @

N

)

N

HARD INSTANCE FOR IDENTIFICATION

-2 -1 0

Valid enumeration of L.; at some finite time t; (and beyond), algorithm must guess L1

Valid enumeration of L. ; at some finite time t, (and beyond), algorithm must guess L.

Valid enumeration of L. _4; at some finite time t; (and beyond), algorithm must guess L. _;

Adversary repeats this game, produces a valid enumeration of L,

Infinite sequence t; < t, < t3 < --- where algorithm makes a mistake

LANGUAGE GENERATION IN THE LIMIT

(Kleinberg-Mullainathan’24)

C = {Lli Lz, L3, }

Adversary chooses some target language L, starts enumerating it in an
order of their choosing

At each time step ¢, algorithm generates a string z;

Generates in the limit if beyond some large enough t*, all strings
generated are new and in L,

chooses L

N
=
N
N
N
w
N
N
N
(g
*
N
(-'-
*
+
=

LANGUAGE GENERATION IN THE LIMIT

ExamPle: C = {Leven integers» Lan integers}

At each step, algorithm generates a new even integer-...

Generates correctly from t = 1, no matter the target language...

However, like identification, is generation in the limit also possible only for
such simple collections!?

HARD INSTANCE FOR IDENTIFICATION

At each step, generate a

Lo ={.. :__.3» _2:__1» 0: 1,2,3,..} number larger than any
Lyy={i,i+1i+2i+3..} number seen as yet...

v

N

LANGUAGE GENERATION IN THE LIMIT

Theorem (Kleinberg-Mullainathan '24): Every countable
collection of languages is generatable in the limit!

Includes finite, regular, context-free/sensitive, recursively

enumerable, @

Recall that identifiability failed even for extremely simple

collections... a

LANGUAGE GENERATION IN THE LIMIT

Known collection C = {L;, L,, L3, ... }

Adversary chooses some target language L,, starts enumerating it

t* can depend on target
L, as well as
enumeration order! @

At each time step t, algorithm generates a string z;

Generates in the limit if beyond some large enough t*, all strings
generated are new and in L,

chooses L

N
=
N
N
N
w
N
N
N
(g
*
N
ﬁ
*
+
=

LANGUAGE GENERATION IN THE LIMIT

Limitation: Definition allows that the time step t* beyond which algorithm
generates validly can depend on the enumeration order!

Example: Suppose C = {Ly, L} Kleinberg-Mullainathan’s
L,={.,-3-2,-1,1,2,3, ...} algorithm also faces this
issue @

L, = {0,1,2,3,4,..)

Suppose L, is the target language, but adversary enumerates it as
1,2,3,4,5,6, ...

Natural algorithm: generate from first consistent language in collection

Until adversary shows 0, can keep generating negative numbers from L, %

NON-UNIFORM GENERATION IN THE
LIMIT

(Li, Raman, Tewari 24)

C = {Ll’ L2,L3, }

Adversary chooses some target language L, starts enumerating it in an order
of their choosing

At each time step ¢, algorithm generates a string z;

Non-uniformly generates in the limit if the moment the algorithm sees t* =
t*(C, L,) distinct strings , all strings generated thereafter are new and in L,

chooses L

© &

NON-UNIFORM GENERATION IN THE LIMIT

Open Question (Li, Raman, Tewari 24): |s
every countable collection of languages non-
uniformly generatable in the limit?

Theorem (Charikar, P '24): Yes! ®

also concurrently resolved by Li, Raman, Tewari

Generatable

Non-uniformly
generatablé™-.,

i Non-uniformly *
generatable? '

Countable language collections

NON-UNIFORM GENERATION ALGORITHM

Algorithm: Example:
|) At time step t, consider the languages Suppose St = {xq,X,, X3, X4, X5}
Ly, Lo, ..., L;
2) Say L; is the first language consistent with the Ly L, Ls Ly Ls
input seen so far; initialize I, = L; i} it 3.}) iln S;L

3) For any subsequent language L; thatisalso 5=l 5=l |151n L:«3|L<F’?’cﬂ Lz| =1§°= LiNLy
. 5 o = = N
consistent with the input: 5 = L1 Is = L1 Ly

If |I, N L;| = oo, update I; = I, N L; Therefore, at t = 5, algorithm

. generates a string from I = Ly N L,
Else move on leaving I; unaffected

4) Generate arbitrary new string from I,

NON-UNIFORM GENERATION ALGORITHM

Algorithm: Invariant: [; from which string is
|) At time step t, consider the languages generated is always infinite

Ly, Lo, ..., L; Suppose target language is L,
2) Say L; is the first language consistent with the {Li,Ly,...L,, ..}

input seen so far; initialize Iy = L; Ob
servation:

3) For any subsequent language L; that is also
consistent with the input:

If |1, N le = oo, update I, = I, N Lj zlfzzl'::;lcii: Z, L, is always under

l) L, is always consistent with input

Else move on leaving I unaffected ,
5t Only want that when L, is

4) Generate arbitrary new string from I, encountered, I; N L, = oo

NON-UNIFORM GENERATION ALGORITHM

Key Definition (Non-uniform Complexity):

For any language L; € C, define its non-uniform complexity m(L;) as follows:

m(L;) = maximum over subsets of {L, ..., L;} that contain L; and have finite
intersection

Example:
L, L, L, L, Le

Suppose |L3 N L]_l = 0O, |L3 N Lzl — 100, |L3 N LZ N Lll — 95
Then m(L3) — maX{ng N Lzl, |L3 N Lz N Lll} — maX{].OO, 95} = 100

m(L;) = maximum over subsets of {L, ..., L;} that contain L; and have finite intersection

Algorithm: Claim: Consider C = {L4,L,, ...L,, ...}
1) At time step t, consider the languages t*(L,,C) = max(z,m(L,) + 1)
Ll' L2» e Lt Proof non-uniform guarantee!
2) Say L; is the first language consistent with the _ o .
input seen so far; initialize I, = L; Consider t satisfying [S¢| = t*(L;, C)
3) For any subsequent language L; that is also L, under consideration since t = z
consistent with the input: Suppose L, did not get added to [;
If |It N le = OO, Update It — It N L] Ll """ LZ """ Lt
Else move on leaving I, unaffected |S;|< I, NL,=|LiNLigN--NL,_; NL,| <o
ul ul u ul
4) Generate arbitrary new string from I, . g g &

But |S;| = m(L,) +1 >

NON-UNIFORM GENERATION WITH
MEMBERSHIP QUERIES

Our non-uniform generation algorithm requires access to an oracle that,
given any finite subcollection of languages, responds with whether the
intersection of languages in the subcollection is finite or not

Kleinberg-Mullainathan’s algorithm requires only a membership query
oracle, that answers queries of the form “is z in L;?”

Can we get non-uniform generation for all countable collections with
only membership queries!?

Theorem (Charikar, P ‘24): Any algorithm that non-uniformly generates

from all collections of size 2 cannot be solely implemented with
membership queries

“non-uniform generation provably requires stronger oracles”

KLEINBERG-MULLAINATHAN’S ALGORITHM

Property: Lack of breadth

Algorithm starts off by producing invalid
strings for a while

Eventually, it refines its hallucinations, and
produces only valid strings thereafter

As t increases, algorithm potentially

generates from an increasingly small subset
of L,

VALIDITY - BREADTH TRADEOFF

60 80 100 120 0 20 40 60 80 100 120

GAN Generated Data Point

Mode Collapse in GANs

Is the validity-breadth tradeoff fundamental to language generation in the limit?
Or can we come up with other algorithms that get the best of both worlds?

EXHAUSTIVE GENERATION

Recall that the input eventually contains every string from the target
language

What if we can terminate the input at any time, and ask the generating
algorithm to go into “generate-only” mode!

chooses L | input terminated!
' xl xz x3 x4 .. xt E generate_only mode
@ Zq Z, Z3 77— Z; Z¢iq AR R—
\ J \
| |
Z<t ZZt

) Want Z_; U Z,, to cover the target language 2) Want Z.; to be valid strings

EXHAUSTIVE GENERATION

chooses L St | o .
{ | | input terminated!
' x]_ xZ x3 x4_ .. xt i gener’ate-orﬂ)’ mode
@ Z1 Zz Z3 Z4 ... Zt Zt+1 Zt+2 ---------------------
\ J \ J
| |
Z<t Zzt

Exhaustively generates in the limit if for all t beyond some large enough t*
(Validity) [Zs¢ \ L| < o0 “stops hallucinating eventually”

(Breadth) S, UZ_,UZ.; 2 L “covers all of K eventually”

EXHAUSTIVE GENERATION

Recall: Every countable collection can be generated in the limit...

Theorem (Charikar, P ’24): There exists a simple countable collection that
cannot be exhaustively generated in the limit

Indicates that validity-breadth tradeoff is real in a formal sense for language
generation in the limit

Adds to growing evidence in literature that language models with desirable
properties must hallucinate (Kalai-Vempala 24, Xu-Jain-Kankanalli 24, etc.)

HARD INSTANCE FOR IDENTIFICATION

Lo,=1{..,-3,-2,-1,0123,..}
Ly, ={i,i+1,i+2,i+3,.. }

v

N

N

EXHAUSTIVE GENERATION LOWER
BOUND

©

1Z5¢, \ L] <0 1Z5¢, \ Lso| <00 |Zsp, \ Ly_q| <0

Valid enumeration of L. ; at some finite time t;, algorithm must exhaustively generate L1

Valid enumeration of L. ,; at some finite time t,, algorithm must exhaustively generate L.

Valid enumeration of L. _4; at some finite time t5, algorithm must exhaustively generate L. _;
Infinite sequence t; < t, < t3 < --- such that at ¢;, |ZZti \ L22—i| <
However, adversary has produced a valid enumeration of L,

There must exist t,, such thatfort >t,, Z.;US;UZs;2L,

EXHAUSTIVE GENERATION
CHARACTERIZATION

However, identifiability % exhaustive generation!
Example: L, = all integers
L_; = all integers except i
Algorithm: simply start generating 0,—1,1,—-2,2,-3,3,—4,4,.....

Recall: A collection is identifiable iff it satisfies Angluin’s condition..

Theorem (Charikar, P ’24): A collection is exhaustively generatable iff it
satisfies a weaker version of Angluin’s condition

Precise characterization of exhaustive generation! @

parallel work by Kalavasis-Mehrotra-Velegkas 24 also proposes a definition of breadth; stronger than ours; closer to identifiability

GENERATION WITH FEEDBACK

What if at each step ¢, algorithm can ask “does y; belong to the target language?”

chooses L
' X4 X5 X3 Xy e X ¢ * y L SR
@ ylin L? yzin L?)73“'1 L? y4in L? yt*in L? yt*+1in L?
' No! No! Yes! No! .. Yes! No!
@ Zy Z Z3 Zy Z* Zt*4+1
new, € L new, € L

We characterize this setting with an abstract complexity parameter of the collection!

SUMMARY

All countable collections can be non-uniformly generated!

Lower bound for non-uniform generation with only membership queries!
Exhaustive Generation: Validity-Breadth tradeoff necessary in generation

Characterization of Exhaustive Generation

Characterization of Generation with Feedback

Going forward

What if input strings have noise! Noise models for generation [Raman, Raman “25]

Notions of qualitative diversity in generated strings [Peale, Raman, Reingold “25]

	Slide 1: Exploring facets of language generation in the limit
	Slide 3: Language Generation
	Slide 4: Language Generation
	Slide 5: Language Generation
	Slide 7: Language Identification in the limit
	Slide 8
	Slide 9
	Slide 10
	Slide 13: Language Generation in the limit
	Slide 14
	Slide 15
	Slide 16: Language Generation in the limit
	Slide 20: Language Generation in the limit
	Slide 21: Language generation in the limit
	Slide 22: Non-uniform Generation in the limit
	Slide 24: Non-uniform generation in the limit
	Slide 25: Non-uniform generation algorithm
	Slide 26: Non-uniform generation algorithm
	Slide 27: Non-uniform generation algorithm
	Slide 29
	Slide 30: Non-uniform generation with membership queries
	Slide 31: Kleinberg-Mullainathan’s algorithm
	Slide 32: Validity - breadth tradeoff
	Slide 33: Exhaustive Generation
	Slide 34: Exhaustive generation
	Slide 35: Exhaustive Generation
	Slide 36
	Slide 37
	Slide 41: Exhaustive Generation characterization
	Slide 42: Generation with feedback
	Slide 44: Summary

