
EXPLORING FACETS OF LANGUAGE
GENERATION IN THE LIMIT

Chirag Pabbaraju

Stanford University

Joint work with

Moses Charikar

LANGUAGE GENERATION

Given a finite set of training examples from some

unknown language, produce new strings from the

language that don’t already appear in the training data

Language

Model

“Inbox overflows,

each ping a quiet demand —

I mute the world now.”

“One text left unread,

not from lack of attention —

I just need some peace.”

“Cracked phone screen again,

a spiderweb of mistakes —

I still swipe through it.”

LANGUAGE GENERATION

Given a finite set of training examples from some

unknown language, produce new strings from the

language that don’t already appear in the training data

Language

Model

𝒙𝟏

𝒙𝒏

𝒛

LANGUAGE GENERATION

Given a finite set of training examples from some

unknown language, produce new strings from the

language that don’t already appear in the training data

𝒙𝟏

𝒙𝟐 𝒙𝟑

𝒙𝒏

𝐿

No structural assumptions

…

Intractable?

LANGUAGE IDENTIFICATION IN THE LIMIT

• Known collection 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿 = 𝐿𝑧 , starts enumerating it

in an order of their choosing

𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ,

• At each time step 𝑡, algorithm makes a guess of the index of the

language that is being enumerated

• Identifies in the limit if beyond some large enough 𝑡⋆, all guesses correct

𝑥1

𝐿2

𝑥2

𝐿2

𝑥3

𝐿10

𝑥4

𝐿21

𝑥𝑡⋆

𝐿70

𝑥𝑡⋆+1

𝐿70

chooses 𝐿70

(Gold ‘67)

Every 𝑥 ∈ 𝐿 appears at some time,

repeats allowed

• Example: 𝒞 = {𝐿even integers, 𝐿all integers}

• Algorithm keeps guessing 𝐿even integers up until the time it sees an odd

integer for the first time, at which point it switches to 𝐿all integers

• If adversary chose 𝐿even integers, algorithm is correct from 𝑡 = 1

• Otherwise, adversary must reveal an odd integer: correct from that point

• Hopelessly hard for essentially any interesting infinite collection (Gold ’67)

• Theorem (Angluin ‘80): Collection identifiable iff it satisfies Angluin’s

condition…. (very restrictive)

LANGUAGE IDENTIFICATION IN THE LIMIT

𝐿∞ = {… , −3, −2, −1, 0, 1, 2, 3, … }
𝐿≥𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … }

HARD INSTANCE FOR IDENTIFICATION

0 1 2 3 4-4 -3 -2 -1
𝐿2

𝐿1

𝐿0

𝐿−1

𝐿∞

HARD INSTANCE FOR IDENTIFICATION

1 2 3 4

Valid enumeration of 𝐿≥1; at some finite time 𝑡1 (and beyond), algorithm must guess 𝐿≥1

𝑡1

: 𝐿≥1!

0

Valid enumeration of 𝐿≥0; at some finite time 𝑡2 (and beyond), algorithm must guess 𝐿≥0

𝑡2

: 𝐿≥0!

-1

Valid enumeration of 𝐿≥−1; at some finite time 𝑡3 (and beyond), algorithm must guess 𝐿≥−1

𝑡3

: 𝐿≥−1!

-2

Adversary repeats this game, produces a valid enumeration of 𝐿∞

Infinite sequence 𝑡1 < 𝑡2 < 𝑡3 < ⋯ where algorithm makes a mistake

LANGUAGE GENERATION IN THE LIMIT

• 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿𝑧 , starts enumerating it in an

order of their choosing

𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ,

• At each time step 𝑡, algorithm generates a string 𝑧𝑡

• Generates in the limit if beyond some large enough 𝑡⋆, all strings

generated are new and in 𝐿𝑧

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆

𝑧𝑡⋆

𝑥𝑡⋆+1

chooses 𝐿70

𝑧𝑡⋆+1
new, ∈ 𝐿70 new, ∈ 𝐿70

(Kleinberg-Mullainathan’24)

• Example: 𝒞 = {𝐿even integers, 𝐿all integers}

• At each step, algorithm generates a new even integer…

• Generates correctly from 𝑡 = 1 , no matter the target language…

However, like identification, is generation in the limit also possible only for

such simple collections?

LANGUAGE GENERATION IN THE LIMIT

𝐿∞ = {… , −3, −2, −1, 0, 1, 2, 3, … }
𝐿≥𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … }

HARD INSTANCE FOR IDENTIFICATION

0 1 2 3 4-4 -3 -2 -1
𝐿2

𝐿1

𝐿0

𝐿−1

𝐿∞

At each step, generate a

number larger than any

number seen as yet…

LANGUAGE GENERATION IN THE LIMIT

• Theorem (Kleinberg-Mullainathan ’24): Every countable

collection of languages is generatable in the limit!

• Includes finite, regular, context-free/sensitive, recursively

enumerable, ….

• Recall that identifiability failed even for extremely simple

collections…

LANGUAGE GENERATION IN THE LIMIT

• Known collection 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿𝑧, starts enumerating it

 𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ,

• At each time step 𝑡, algorithm generates a string 𝑧𝑡

• Generates in the limit if beyond some large enough 𝑡⋆, all strings

generated are new and in 𝐿𝑧

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆

𝑧𝑡⋆

𝑥𝑡⋆+1

chooses 𝐿70

𝑧𝑡⋆+1
new, ∈ 𝐿70 new, ∈ 𝐿70

𝑡⋆ can depend on target

𝐿𝑧 as well as

enumeration order!

LANGUAGE GENERATION IN THE LIMIT

• Limitation: Definition allows that the time step 𝑡⋆ beyond which algorithm

generates validly can depend on the enumeration order!

• Example: Suppose 𝒞 = {𝐿1, 𝐿2}

𝐿1 = {… , −3, −2, −1, 1, 2, 3, … }

𝐿2 = {0, 1, 2, 3, 4, … }

• Suppose 𝐿2 is the target language, but adversary enumerates it as

1, 2, 3, 4, 5, 6, …

• Natural algorithm: generate from first consistent language in collection

• Until adversary shows 0, can keep generating negative numbers from 𝐿1

Kleinberg-Mullainathan’s

algorithm also faces this

issue

NON-UNIFORM GENERATION IN THE
LIMIT

• 𝒞 = {𝐿1, 𝐿2, 𝐿3, … }

• Adversary chooses some target language 𝐿𝑧 , starts enumerating it in an order

of their choosing

𝑥1, 𝑥2 , 𝑥3 , 𝑥4 , 𝑥5 ,

• At each time step 𝑡, algorithm generates a string 𝑧𝑡

• Non-uniformly generates in the limit if the moment the algorithm sees 𝑡⋆ =
𝑡⋆(𝒞, 𝐿𝑧) distinct strings , all strings generated thereafter are new and in 𝐿𝑧

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆

𝑧𝑡⋆

𝑥𝑡⋆+1

chooses 𝐿70

𝑧𝑡⋆+1
new, ∈ 𝐿70 new, ∈ 𝐿70

𝑥1
′ 𝑥𝑡⋆

′𝑥4
′𝑥2

′ 𝑥3
′ 𝑥𝑡⋆+1

′

𝑧𝑡⋆
′ 𝑧𝑡⋆+1

′
𝑧1

′ 𝑧4
′𝑧2

′ 𝑧3
′

(Li, Raman, Tewari ‘24)

NON-UNIFORM GENERATION IN THE LIMIT

• Open Question (Li, Raman, Tewari ‘24): Is

every countable collection of languages non-

uniformly generatable in the limit?

• Theorem (Charikar, P ‘24): Yes!

Countable language collections

Generatable

Non-uniformly

generatable?

Non-uniformly

generatable

also concurrently resolved by Li, Raman, Tewari

NON-UNIFORM GENERATION ALGORITHM

Algorithm:

1) At time step 𝑡, consider the languages

𝐿1, 𝐿2, … , 𝐿𝑡

2) Say 𝐿𝑖 is the first language consistent with the

input seen so far; initialize 𝐼𝑡 = 𝐿𝑖

3) For any subsequent language 𝐿𝑗 that is also

consistent with the input:

 If |𝐼𝑡 ∩ 𝐿𝑗| = ∞, update 𝐼𝑡 = 𝐼𝑡 ∩ 𝐿𝑗

 Else move on leaving 𝐼𝑡 unaffected

4) Generate arbitrary new string from 𝐼𝑡

Example:

Suppose 𝑆5 = {𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5}

Therefore, at 𝑡 = 5, algorithm

generates a string from 𝐼5 = 𝐿1 ∩ 𝐿4

𝐿3𝐿2 𝐿4 𝐿5𝐿1

𝑆 5
⊆

𝐼5 = 𝐿1

𝑆 5
⊈

𝐼5 = 𝐿1

𝑆 5
⊆

|𝐼5 ∩ 𝐿3| < ∞
 𝐼5 = 𝐿1

𝑆 5
⊆

|𝐼5 ∩ 𝐿4| = ∞
 𝐼5 = 𝐿1 ∩ 𝐿4

𝑆 5
⊈

𝐼5 = 𝐿1 ∩ 𝐿4

NON-UNIFORM GENERATION ALGORITHM

Algorithm:

1) At time step 𝑡, consider the languages

𝐿1, 𝐿2, … , 𝐿𝑡

2) Say 𝐿𝑖 is the first language consistent with the

input seen so far; initialize 𝐼𝑡 = 𝐿𝑖

3) For any subsequent language 𝐿𝑗 that is also

consistent with the input:

 If |𝐼𝑡 ∩ 𝐿𝑗| = ∞, update 𝐼𝑡 = 𝐼𝑡 ∩ 𝐿𝑗

 Else move on leaving 𝐼𝑡 unaffected

4) Generate arbitrary new string from 𝐼𝑡

Invariant: 𝐼𝑡 from which string is

generated is always infinite

Suppose target language is 𝐿𝑧

{𝐿1, 𝐿2, … 𝐿𝑧 , … }

Observation:

1) 𝐿𝑧 is always consistent with input

2) Beyond 𝑡 = 𝑧, 𝐿𝑧 is always under

consideration

Only want that when 𝐿𝑧 is

encountered, 𝐼𝑡 ∩ 𝐿𝑧 = ∞

NON-UNIFORM GENERATION ALGORITHM

Key Definition (Non-uniform Complexity):

For any language 𝐿𝑖 ∈ 𝒞, define its non-uniform complexity 𝑚(𝐿𝑖) as follows:

𝑚 𝐿𝑖 = maximum over subsets of {𝐿1, … , 𝐿𝑖} that contain 𝐿𝑖 and have finite

intersection

Example:

Suppose 𝐿3 ∩ 𝐿1 = ∞, 𝐿3 ∩ 𝐿2 = 100, 𝐿3 ∩ 𝐿2 ∩ 𝐿1 = 95

Then 𝑚 𝐿3 = max 𝐿3 ∩ 𝐿2 , |𝐿3 ∩ 𝐿2 ∩ 𝐿1| = max 100, 95 = 100

𝐿3𝐿2 𝐿4 𝐿5𝐿1

𝑚 𝐿𝑖 = maximum over subsets of {𝐿1, … , 𝐿𝑖} that contain 𝐿𝑖 and have finite intersection

Algorithm:

1) At time step 𝑡, consider the languages

𝐿1, 𝐿2, … , 𝐿𝑡

2) Say 𝐿𝑖 is the first language consistent with the

input seen so far; initialize 𝐼𝑡 = 𝐿𝑖

3) For any subsequent language 𝐿𝑗 that is also

consistent with the input:

 If |𝐼𝑡 ∩ 𝐿𝑗| = ∞, update 𝐼𝑡 = 𝐼𝑡 ∩ 𝐿𝑗

 Else move on leaving 𝐼𝑡 unaffected

4) Generate arbitrary new string from 𝐼𝑡

Claim: Consider 𝒞 = {𝐿1, 𝐿2, … 𝐿𝑧 , … }

𝑡⋆ 𝐿𝑧 , 𝒞 = max(𝑧, 𝑚 𝐿𝑧 + 1)

Proof:

Consider 𝑡 satisfying 𝑆𝑡 ≥ 𝑡⋆(𝐿𝑧 , 𝒞)

𝐿𝑧 under consideration since 𝑡 ≥ 𝑧

Suppose 𝐿𝑧 did not get added to 𝐼𝑡

But 𝑆𝑡 ≥ 𝑚 𝐿𝑧 + 1 ⟹⟸

𝐿𝑧. 𝐿𝑡𝐿1

𝐼𝑡 ∩ 𝐿𝑧 = |𝐿1 ∩ 𝐿10 ∩ ⋯ ∩ 𝐿𝑧−1 ∩ 𝐿𝑧| < ∞

𝑆 𝑡
⊆

𝑆 𝑡
⊆

𝑆 𝑡
⊆

𝑆 𝑡
⊆

𝑆𝑡 ≤

non-uniform guarantee!

NON-UNIFORM GENERATION WITH
MEMBERSHIP QUERIES

• Our non-uniform generation algorithm requires access to an oracle that,

given any finite subcollection of languages, responds with whether the

intersection of languages in the subcollection is finite or not

• Kleinberg-Mullainathan’s algorithm requires only a membership query

oracle, that answers queries of the form “is 𝑧 in 𝐿𝑖?”

• Can we get non-uniform generation for all countable collections with

only membership queries?

• Theorem (Charikar, P ‘24): Any algorithm that non-uniformly generates

from all collections of size 2 cannot be solely implemented with

membership queries

“non-uniform generation provably requires stronger oracles”

KLEINBERG-MULLAINATHAN’S ALGORITHM

Property: Lack of breadth

1) Algorithm starts off by producing invalid

strings for a while

2) Eventually, it refines its hallucinations, and

produces only valid strings thereafter

3) As 𝑡 increases, algorithm potentially

generates from an increasingly small subset

of 𝐿𝑧

𝑧1

𝐿𝑧

𝑧2

𝑧3

𝑧4

𝑧𝑡⋆

𝑧5𝑡⋆

𝑧100𝑡⋆

𝑧𝑡⋆+1

𝑧𝑡⋆+1

VALIDITY - BREADTH TRADEOFF

Mode Collapse in GANs

Is the validity-breadth tradeoff fundamental to language generation in the limit?

Or can we come up with other algorithms that get the best of both worlds?

EXHAUSTIVE GENERATION

• Recall that the input eventually contains every string from the target

language

• What if we can terminate the input at any time, and ask the generating

algorithm to go into “generate-only” mode?

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡

chooses 𝐿

𝑧𝑡

input terminated!

generate-only mode

𝑧𝑡+1 𝑧𝑡+2

𝑍<𝑡 𝑍≥𝑡

1) Want 𝑍<𝑡 ∪ 𝑍≥𝑡 to cover the target language 2) Want 𝑍≥𝑡 to be valid strings

EXHAUSTIVE GENERATION

• Exhaustively generates in the limit if for all 𝑡 beyond some large enough 𝑡⋆

1) (Validity) 𝑍≥𝑡 ∖ 𝐿 < ∞

2) (Breadth) 𝑆𝑡 ∪ 𝑍<𝑡 ∪ 𝑍≥𝑡 ⊇ 𝐿

𝑥1

𝑧1

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡

chooses 𝐿

𝑧𝑡 𝑧𝑡+1 𝑧𝑡+2

𝑍<𝑡 𝑍≥𝑡

“stops hallucinating eventually”

“covers all of 𝐾 eventually”

input terminated!

generate-only mode

𝑆𝑡

EXHAUSTIVE GENERATION

• Recall: Every countable collection can be generated in the limit…

• Theorem (Charikar, P ’24): There exists a simple countable collection that

cannot be exhaustively generated in the limit

• Indicates that validity-breadth tradeoff is real in a formal sense for language

generation in the limit

• Adds to growing evidence in literature that language models with desirable

properties must hallucinate (Kalai-Vempala ‘24, Xu-Jain-Kankanalli ‘24, etc.)

𝐿∞ = {… , −3, −2, −1, 0, 1, 2, 3, … }
𝐿≥𝑖 = {𝑖, 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, … }

HARD INSTANCE FOR IDENTIFICATION

0 1 2 3 4-4 -3 -2 -1
𝐿2

𝐿1

𝐿0

𝐿−1

𝐿∞

EXHAUSTIVE GENERATION LOWER
BOUND

1 2 3 4

Valid enumeration of 𝐿≥1; at some finite time 𝑡1, algorithm must exhaustively generate 𝐿≥1

𝑡1

|𝑍≥𝑡1
∖ 𝐿≥1| < ∞

0

Valid enumeration of 𝐿≥0; at some finite time 𝑡2, algorithm must exhaustively generate 𝐿≥0

𝑡2

|𝑍≥𝑡2
∖ 𝐿≥0| < ∞

-1

Valid enumeration of 𝐿≥−1; at some finite time 𝑡3, algorithm must exhaustively generate 𝐿≥−1

𝑡3

|𝑍≥𝑡3
∖ 𝐿≥−1| < ∞

-2

There must exist 𝑡∞ such that for 𝑡 ≥ 𝑡∞, 𝑍<𝑡 ∪ 𝑆𝑡 ∪ 𝑍≥𝑡 ⊇ 𝐿∞

Infinite sequence 𝑡1 < 𝑡2 < 𝑡3 < ⋯ such that at 𝑡𝑖 , 𝑍≥𝑡𝑖
∖ 𝐿≥2−𝑖 < ∞

However, adversary has produced a valid enumeration of 𝐿∞

EXHAUSTIVE GENERATION
CHARACTERIZATION

• However, identifiability ≇ exhaustive generation!

• Example: 𝐿∞ = all integers

𝐿−𝑖 = all integers except 𝑖

• Algorithm: simply start generating 0, −1, 1, −2, 2, −3, 3, −4, 4,

• Recall: A collection is identifiable iff it satisfies Angluin’s condition..

• Theorem (Charikar, P ’24): A collection is exhaustively generatable iff it

satisfies a weaker version of Angluin’s condition

• Precise characterization of exhaustive generation!

parallel work by Kalavasis-Mehrotra-Velegkas ‘24 also proposes a definition of breadth; stronger than ours; closer to identifiability

GENERATION WITH FEEDBACK

• What if at each step 𝑡, algorithm can ask “does 𝑦𝑡 belong to the target language?”

• We characterize this setting with an abstract complexity parameter of the collection!

𝑥1

𝑦1in 𝐿?

𝑥2

𝑧2

𝑥3

𝑧3

𝑥4

𝑧4

𝑥𝑡⋆

𝑧𝑡⋆

𝑥𝑡⋆+1

chooses 𝐿

𝑧𝑡⋆+1
new, ∈ 𝐿 new, ∈ 𝐿

No!

𝑧1

𝑦2in 𝐿?

No!

𝑦3in 𝐿?

Yes!

𝑦4in 𝐿?

No!

𝑦𝑡⋆ in 𝐿?

Yes!

𝑦𝑡⋆+1in 𝐿?

No!

SUMMARY

• All countable collections can be non-uniformly generated!

• Lower bound for non-uniform generation with only membership queries!

• Exhaustive Generation: Validity-Breadth tradeoff necessary in generation

• Characterization of Exhaustive Generation

• Characterization of Generation with Feedback

Going forward

• What if input strings have noise? Noise models for generation [Raman, Raman ‘25]

• Notions of qualitative diversity in generated strings [Peale, Raman, Reingold ‘25]

	Slide 1: Exploring facets of language generation in the limit
	Slide 3: Language Generation
	Slide 4: Language Generation
	Slide 5: Language Generation
	Slide 7: Language Identification in the limit
	Slide 8
	Slide 9
	Slide 10
	Slide 13: Language Generation in the limit
	Slide 14
	Slide 15
	Slide 16: Language Generation in the limit
	Slide 20: Language Generation in the limit
	Slide 21: Language generation in the limit
	Slide 22: Non-uniform Generation in the limit
	Slide 24: Non-uniform generation in the limit
	Slide 25: Non-uniform generation algorithm
	Slide 26: Non-uniform generation algorithm
	Slide 27: Non-uniform generation algorithm
	Slide 29
	Slide 30: Non-uniform generation with membership queries
	Slide 31: Kleinberg-Mullainathan’s algorithm
	Slide 32: Validity - breadth tradeoff
	Slide 33: Exhaustive Generation
	Slide 34: Exhaustive generation
	Slide 35: Exhaustive Generation
	Slide 36
	Slide 37
	Slide 41: Exhaustive Generation characterization
	Slide 42: Generation with feedback
	Slide 44: Summary

