EXPLORING FACETS OF LANGUAGE GENERATION IN THE LIMIT

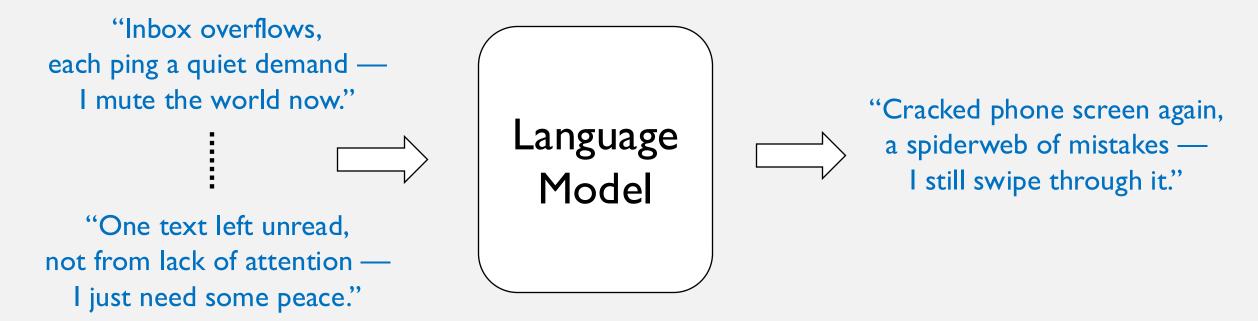
Chirag Pabbaraju

Stanford University

Joint work with Moses Charikar

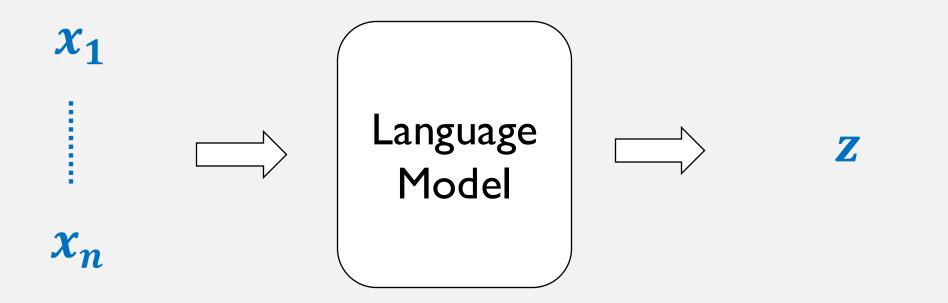
LANGUAGE GENERATION

Given a finite set of training examples from some unknown language, produce new strings from the language that don't already appear in the training data



LANGUAGE GENERATION

Given a finite set of training examples from some unknown language, produce new strings from the language that don't already appear in the training data



LANGUAGE GENERATION

Given a finite set of training examples from some unknown language, produce new strings from the language that don't already appear in the training data

No structural assumptions ... 💬 Intractable?



LANGUAGE IDENTIFICATION IN THE LIMIT (Gold '67)

• Known collection $\mathcal{C} = \{L_1, L_2, L_3, ...\}$

chooses L_{70}

• Adversary chooses some target language $L = L_z$, starts enumerating it in an order of their choosing Every $x \in L$ appears at some time,

 $x_1, x_2, x_3, x_4, x_5, \dots$ repeats allowed

- At each time step t, algorithm makes a guess of the index of the language that is being enumerated
- Identifies in the limit if beyond some large enough t^* , all guesses correct

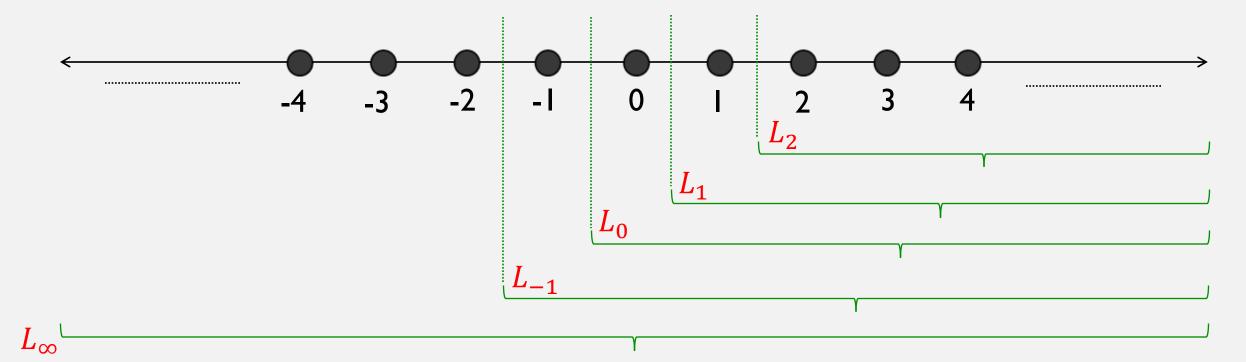
	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	 $x_t \star$	$x_{t^{\star}+1}$
3	L_2	L_2	L_{10}	L_{21}	 L_{70}	L ₇₀

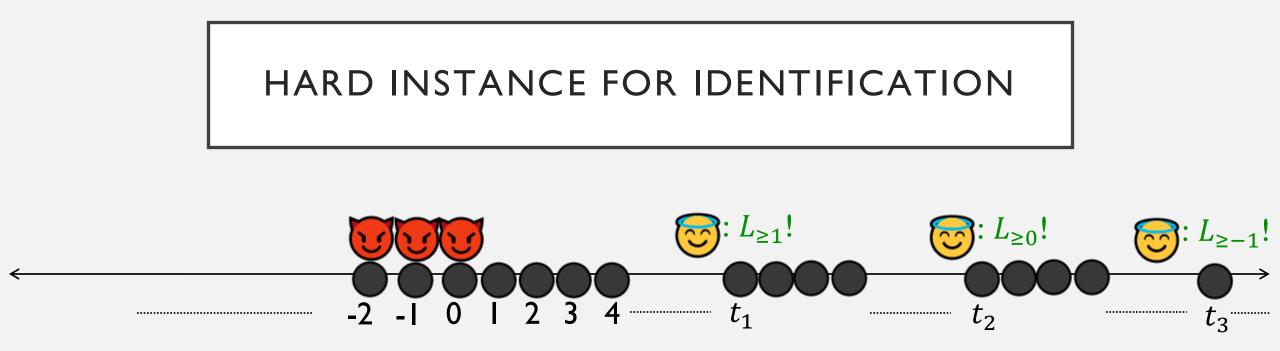
LANGUAGE IDENTIFICATION IN THE LIMIT

- **Example**: $C = \{L_{\text{even integers}}, L_{\text{all integers}}\}$
- Algorithm keeps guessing $L_{\text{even integers}}$ up until the time it sees an odd integer for the first time, at which point it switches to $L_{\text{all integers}}$
- If adversary chose $L_{\text{even integers}}$, algorithm is correct from t = 1
- Otherwise, adversary must reveal an odd integer: correct from that point
- Hopelessly hard for essentially any interesting infinite collection (Gold '67)
- <u>Theorem (Angluin '80)</u>: Collection identifiable iff it satisfies Angluin's condition.... (very restrictive)

HARD INSTANCE FOR IDENTIFICATION

$$L_{\infty} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$
$$L_{\geq i} = \{i, i + 1, i + 2, i + 3, \dots\}$$





Valid enumeration of $L_{\geq 1}$; at some finite time t_1 (and beyond), algorithm must guess $L_{\geq 1}$ Valid enumeration of $L_{\geq 0}$; at some finite time t_2 (and beyond), algorithm must guess $L_{\geq 0}$ Valid enumeration of $L_{\geq -1}$; at some finite time t_3 (and beyond), algorithm must guess $L_{\geq -1}$ Adversary repeats this game, produces a valid enumeration of L_{∞} Infinite sequence $t_1 < t_2 < t_3 < \cdots$ where algorithm makes a mistake

LANGUAGE GENERATION IN THE LIMIT (Kleinberg-Mullainathan'24)

- $\mathcal{C} = \{L_1, L_2, L_3, \dots\}$
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

 $x_1, x_2, x_3, x_4, x_5, \dots$

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^* , all strings generated are new and in L_z

chooses L₇₀

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	 $x_t \star$	$x_{t^{\star}+1}$
3	<i>Z</i> ₁	<i>Z</i> ₂	<i>Z</i> ₃	Z_4	 ${Z_t}^\star$ new, $\in L_{70}$	$Z_t^{\star}_{\pm 1}$ new, $\in L_{70}$

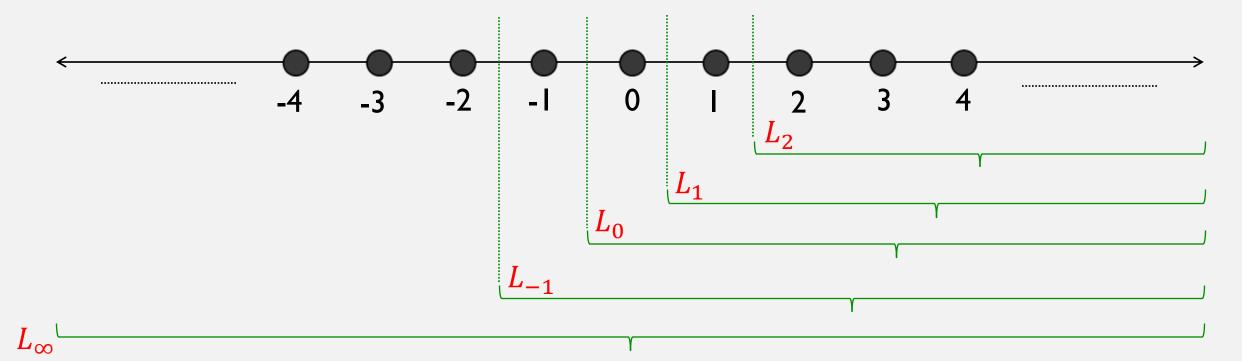
- **Example:** $C = \{L_{\text{even integers}}, L_{\text{all integers}}\}$
- At each step, algorithm generates a new even integer...
- Generates correctly from t = 1, no matter the target language...

However, like identification, is generation in the limit also possible only for such simple collections?

HARD INSTANCE FOR IDENTIFICATION

$$L_{\infty} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$
$$L_{\geq i} = \{i, i + 1, i + 2, i + 3, \dots\}$$

At each step, generate a number larger than any number seen as yet...



- <u>Theorem (Kleinberg-Mullainathan '24)</u>: Every countable collection of languages is generatable in the limit!
- Includes finite, regular, context-free/sensitive, recursively enumerable,
- Recall that identifiability failed even for extremely simple collections...

- Known collection $\mathcal{C} = \{L_1, L_2, L_3, ...\}$
- Adversary chooses some target language L_Z , starts enumerating it $x_1, x_2, x_3, x_4, x_5, \dots$

enumeration order! 😓

- At each time step t, algorithm generates a string z_t
- Generates in the limit if beyond some large enough t^{\star} , all strings generated are new and in L_z

chooses L₇₀

	<i>x</i> ₁	<i>x</i> ₂	<i>x</i> ₃	x_4	 x_t^{\star}	<i>x</i> _t *+1
0	Z_1	<i>Z</i> ₂	<i>Z</i> ₃	Z_4	 Z_t^{\star} new, $\in L_{70}$	${Z_t}^{\star} + 1$ new, $\in L_{70}$

- <u>Limitation</u>: Definition allows that the time step t^* beyond which algorithm generates validly can depend on the enumeration order!
 - Example: Suppose $C = \{L_1, L_2\}$ $L_1 = \{\dots, -3, -2, -1, 1, 2, 3, \dots\}$ $L_2 = \{0, 1, 2, 3, 4, \dots\}$

Kleinberg-Mullainathan's algorithm also faces this issue 😒

• Suppose L_2 is the target language, but adversary enumerates it as

1, 2, 3, 4, 5, 6, ...

- Natural algorithm: generate from first consistent language in collection
- Until adversary shows 0, can keep generating negative numbers from L_1 😓

NON-UNIFORM GENERATION IN THE LIMIT (Li, Raman, Tewari '24)

- $\mathcal{C} = \{L_1, L_2, L_3, \dots\}$
- Adversary chooses some target language L_z , starts enumerating it in an order of their choosing

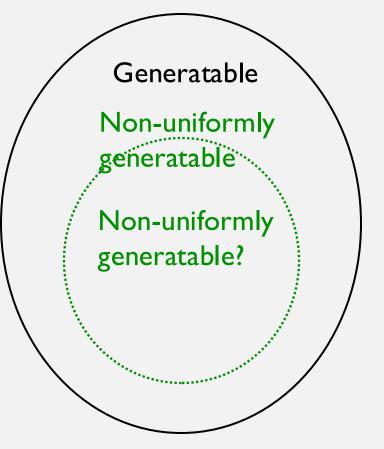
 $x_1, x_2, x_3, x_4, x_5, \dots$

- At each time step t, algorithm generates a string z_t
- Non-uniformly generates in the limit if the moment the algorithm sees $t^* = t^*(\mathcal{C}, L_z)$ distinct strings, all strings generated thereafter are new and in L_z

chooses L ₇₀									
	x'_1	x ₂ '	<i>x</i> ' ₃	x'_4		x'_{t^*}	$x'_{t^{*}+1}$		
3	z'_1	Z_2'	z'_3	Z'_4		$m{z'_t}*$ new, $\in L_{70}$	z'_{t^*+1} mew, $\in L_{70}$		

NON-UNIFORM GENERATION IN THE LIMIT

• <u>Open Question (Li, Raman, Tewari '24)</u>: Is every countable collection of languages nonuniformly generatable in the limit?



Countable language collections

also concurrently resolved by Li, Raman, Tewari

NON-UNIFORM GENERATION ALGORITHM

<u>Algorithm:</u>

I) At time step t, consider the languages L_1, L_2, \dots, L_t

2) Say L_i is the first language consistent with the input seen so far; initialize $I_t = L_i$

3) For any subsequent language L_j that is also consistent with the input:

If $|I_t \cap L_i| = \infty$, update $I_t = I_t \cap L_i$

Else move on leaving I_t unaffected

4) Generate arbitrary new string from I_t

Example:

Suppose $S_5 = \{x_1, x_2, x_3, x_4, x_5\}$

Therefore, at t = 5, algorithm generates a string from $I_5 = L_1 \cap L_4$

NON-UNIFORM GENERATION ALGORITHM

<u>Algorithm:</u>

- I) At time step t, consider the languages L_1, L_2, \dots, L_t
- 2) Say L_i is the first language consistent with the input seen so far; initialize $I_t = L_i$
- 3) For any subsequent language L_j that is also consistent with the input:
 - If $|I_t \cap L_j| = \infty$, update $I_t = I_t \cap L_j$
 - Else move on leaving I_t unaffected
- 4) Generate arbitrary new string from I_t

Invariant: I_t from which string is generated is always infinite

Suppose target language is L_z

$$\{L_1,L_2,\ldots L_z,\ldots\}$$

Observation:

1) L_z is always consistent with input

2) Beyond t = z, L_z is always under consideration

Only want that when L_z is encountered, $I_t \cap L_z = \infty$

NON-UNIFORM GENERATION ALGORITHM

Key Definition (Non-uniform Complexity):

For any language $L_i \in C$, define its non-uniform complexity $m(L_i)$ as follows:

 $m(L_i) =$ maximum over subsets of $\{L_1, ..., L_i\}$ that contain L_i and have finite intersection

Example:

$$L_1 \qquad L_2 \qquad L_3 \qquad L_4 \qquad L_5$$

Suppose $|L_3 \cap L_1| = \infty$, $|L_3 \cap L_2| = 100$, $|L_3 \cap L_2 \cap L_1| = 95$
Then $m(L_3) = \max\{|L_3 \cap L_2|, |L_3 \cap L_2 \cap L_1|\} = \max\{100, 95\} = 100$

 $m(L_i) = \text{maximum over subsets of } \{L_1, \dots, L_i\}$ that contain L_i and have finite intersection

<u>Algorithm:</u>

I) At time step t, consider the languages $L_1, L_2, ..., L_t$

2) Say L_i is the first language consistent with the input seen so far; initialize $I_t = L_i$

3) For any subsequent language L_i that is also consistent with the input:

If $|I_t \cap L_i| = \infty$, update $I_t = I_t \cap L_i$

4) Generate arbitrary new string from I_t

<u>Claim</u>: Consider $\mathcal{C} = \{L_1, L_2, \dots, L_z, \dots\}$ $t^{\star}(L_z, \mathcal{C}) = \max(z, m(L_z) + 1)$ non-uniform guarantee! 🥙 Proof: Consider t satisfying $|S_t| \ge t^*(L_z, \mathcal{C})$ L_z under consideration since $t \ge z$ Suppose L_z did not get added to I_t $L_1 \qquad \dots \qquad L_z \qquad \dots \qquad L_t$ Else move on leaving I_t unaffected $|S_t| \leq I_t \cap L_z = |L_1 \cap L_{10} \cap \cdots \cap L_{z-1} \cap L_z| < \infty$ $\begin{array}{ccc} S_t & \square \\ S_t & \square \\ \\ S_t & \square \\ \\ S_t & \square \\ \end{array}$ But $|S_t| \ge m(L_z) + 1 \Longrightarrow \Leftarrow$

NON-UNIFORM GENERATION WITH MEMBERSHIP QUERIES

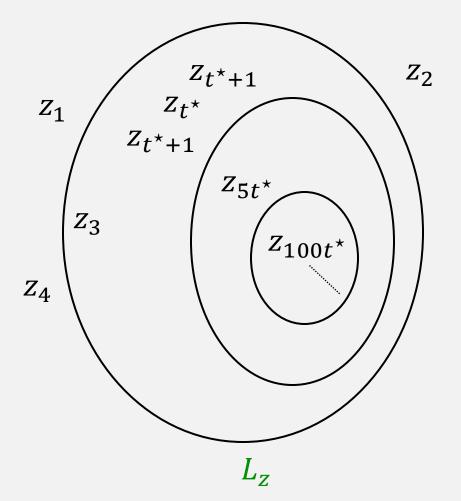
- Our non-uniform generation algorithm requires access to an oracle that, given any finite subcollection of languages, responds with whether the intersection of languages in the subcollection is finite or not
- Kleinberg-Mullainathan's algorithm requires only a membership query oracle, that answers queries of the form "is z in L_i ?"
- Can we get non-uniform generation for all countable collections with only membership queries?
- <u>Theorem (Charikar, P '24)</u>: Any algorithm that non-uniformly generates from all collections of size 2 cannot be solely implemented with membership queries

"non-uniform generation provably requires stronger oracles"

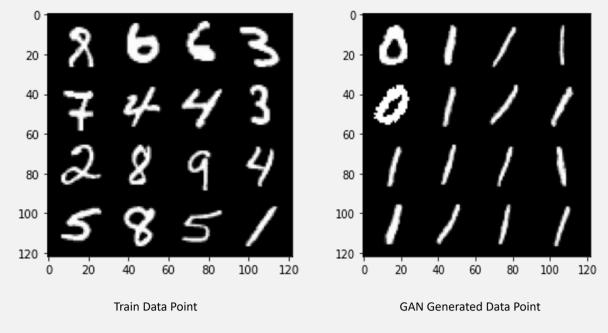
KLEINBERG-MULLAINATHAN'S ALGORITHM

Property: Lack of breadth

- Algorithm starts off by producing invalid strings for a while
- 2) Eventually, it refines its hallucinations, and produces only valid strings thereafter
- 3) As t increases, algorithm potentially generates from an increasingly small subset of L_z



VALIDITY - BREADTH TRADEOFF

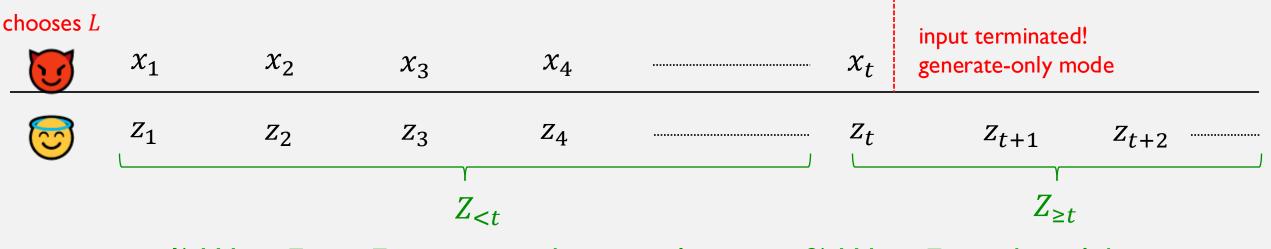


Mode Collapse in GANs

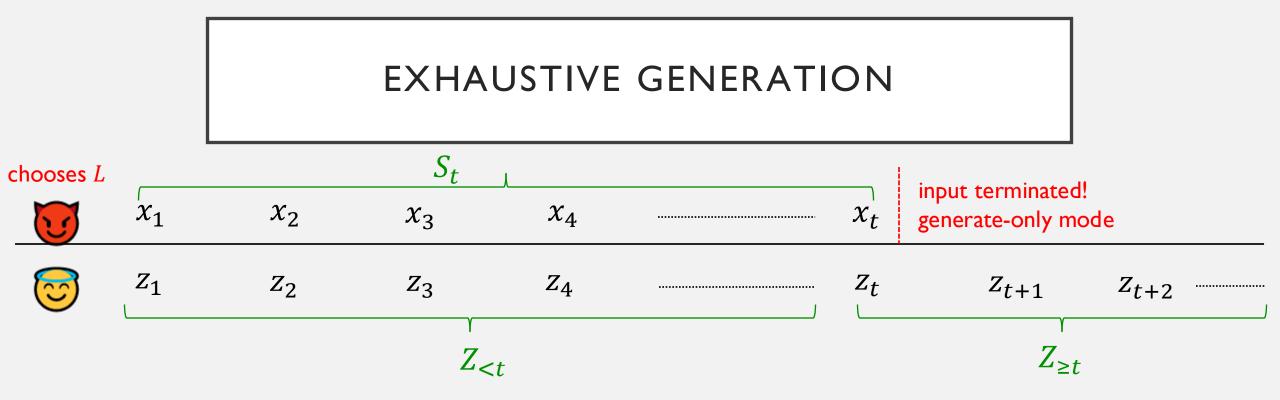
Is the validity-breadth tradeoff fundamental to language generation in the limit? Or can we come up with other algorithms that get the best of both worlds?

EXHAUSTIVE GENERATION

- Recall that the input eventually contains every string from the target language
- What if we can terminate the input at any time, and ask the generating algorithm to go into "generate-only" mode?



1) Want $Z_{\leq t} \cup Z_{\geq t}$ to cover the target language 2) Want $Z_{\geq t}$ to be valid strings



• Exhaustively generates in the limit if for all t beyond some large enough t^*

1) (Validity) $|Z_{\geq t} \setminus L| < \infty$ "stops hallucinating eventually"

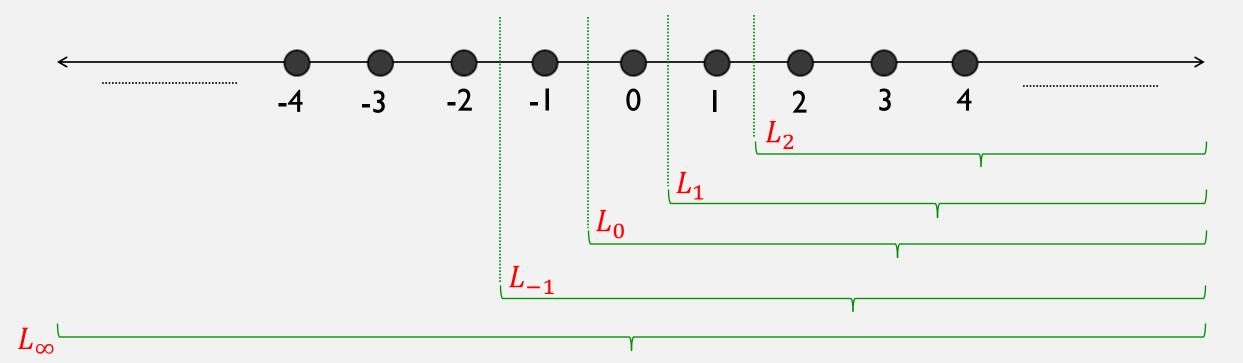
2) (Breadth) $S_t \cup Z_{\leq t} \cup Z_{\geq t} \supseteq L$ "covers all of K eventually"

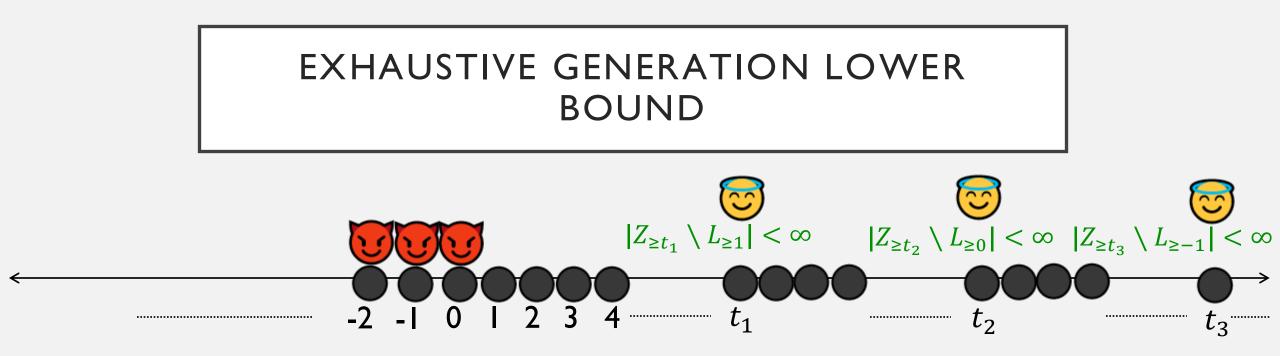
EXHAUSTIVE GENERATION

- Recall: Every countable collection can be generated in the limit...
- <u>Theorem (Charikar, P '24):</u> There exists a simple countable collection that cannot be exhaustively generated in the limit
- Indicates that validity-breadth tradeoff is real in a formal sense for language generation in the limit
- Adds to growing evidence in literature that language models with desirable properties must hallucinate (Kalai-Vempala '24, Xu-Jain-Kankanalli '24, etc.)

HARD INSTANCE FOR IDENTIFICATION

$$L_{\infty} = \{\dots, -3, -2, -1, 0, 1, 2, 3, \dots\}$$
$$L_{\geq i} = \{i, i + 1, i + 2, i + 3, \dots\}$$





Valid enumeration of $L_{\geq 1}$; at some finite time t_1 , algorithm must exhaustively generate $L_{\geq 1}$ Valid enumeration of $L_{\geq 0}$; at some finite time t_2 , algorithm must exhaustively generate $L_{\geq 0}$ Valid enumeration of $L_{\geq -1}$; at some finite time t_3 , algorithm must exhaustively generate $L_{\geq -1}$ Infinite sequence $t_1 < t_2 < t_3 < \cdots$ such that at t_i , $|Z_{\geq t_i} \setminus L_{\geq 2-i}| < \infty$ However, adversary has produced a valid enumeration of L_{∞} There must exist t_{∞} such that for $t \geq t_{\infty}$, $Z_{\leq t} \cup S_t \cup Z_{\geq t} \supseteq L_{\infty}$

EXHAUSTIVE GENERATION **CHARACTERIZATION**

- However, identifiability \cong exhaustive generation!
- Example: $L_{\infty} =$ all integers

 $L_{-i} =$ all integers except *i*

- <u>Algorithm</u>: simply start generating $0, -1, 1, -2, 2, -3, 3, -4, 4, \dots$
- Recall: A collection is identifiable iff it satisfies Angluin's condition..
- <u>Theorem (Charikar, P'24)</u>: A collection is exhaustively generatable iff it satisfies a weaker version of Angluin's condition
- Precise characterization of exhaustive generation!

parallel work by Kalavasis-Mehrotra-Velegkas '24 also proposes a definition of breadth; stronger than ours; closer to identifiability

GENERATION WITH FEEDBACK

• What if at each step t, algorithm can ask "does y_t belong to the target language?"

chooses L

	x_1	<i>x</i> ₂	<i>x</i> ₃	x_4	 x_t^{\star}	$x_{t^{\star}+1}$
6	y_1 in L ?	y_2 in L ?	y_3 in L ?	y_4 in $L?$	$y_t \star in L?$	$y_{t^{\star}+1}$ in <i>L</i> ?
V	No!	No!	Yes!	No!	 Yes!	No!
	<i>Z</i> ₁	Z_2	Z_3	Z_4	${Z_t}^\star$ new, $\in L$	$Z_{t^{\star}+1}$ new, $\in L$

• We characterize this setting with an abstract complexity parameter of the collection!

SUMMARY

- All countable collections can be non-uniformly generated!
- Lower bound for non-uniform generation with only membership queries!
- Exhaustive Generation: Validity-Breadth tradeoff necessary in generation
- Characterization of Exhaustive Generation
- Characterization of Generation with Feedback

Going forward

- What if input strings have noise? Noise models for generation [Raman, Raman '25]
- Notions of qualitative diversity in generated strings [Peale, Raman, Reingold '25]