
Trade-Offs Between Hallucinations and Mode Collapse in
Language Generation

Grigoris Velegkas

Based on joint works with Alkis Kalavasis and Anay Mehrotra

2

Early Days of CS + Language Learning [Shannon ’51]
Shannon introduced n-grams, tremendous impact on early text
generators

Text guessing game with his wife: reveal prefix of text, try to guess
continuation!

Related to LLM training!

3

Early Days of CS + Language Learning [Chomsky ’56]
Chomsky hierarchy: a classification of formal languages based on
their complexity

4

Early Days of CS + Language Learning [Gold ’67]

“I wish to construct a precise model for the intuitive notion
"able to speak a language" in order to be able to investigate
theoretically how it can be achieved artificially. Since we
cannot explicitly write down the rules of English …
artificial intelligence which is designed to speak English
will have to learn its rules from implicit information….”

Gold’s model is a predecessor to the celebrated PAC framework
[Valiant 1984] (Turing Award 2010)

Describes many pioneering ideas:
Learning from examples
Hypothesis class
Two-player online adversarial game (predecessor to Littlestone’s
setting)
Active learning (!)

5

Modern Days of CS + Language Learning
Variety of techniques based on modern deep learning

Word-to-vector representation [Mikolov, Chen, Corrado, Dean’13]
Attention [Bahdanau, Cho, Bengio ’14]
Seq-2-seq [Sutskever, Vinyals, Le ’14]
Transformers [Vaswani et al. ’17]
GPT-2 [Radford et al. ’19]

6

Modern Days of CS + Language Learning

7

HallucinaFons

8

HallucinaFons - Early Days

9

HallucinaFons

10

Overarching QuesFon

Can hallucinations be avoided with “better” models or are there
inherent limitations?

This talk: no computational constraints, no architecture-specific problems, abstract mathematical
model to study this question

11

Outline of the Talk

Motivation: CS and Language

Theoretical Model

Overview of our Definitions and Results

Overview of (some) Proofs

12

Outline of the Talk

Motivation: CS and Language

Theoretical Model

Overview of our Definitions and Results

Overview of (some) Proofs

13

What is the Essence of Language GeneraFon?

Simplications:
Remove the requirement to learn a distribution
Consider a promptless model (extension to prompted model can be achieved)
Do not necessarily need to learn the entirety of the target language

Given text from an unknown language, learn to produce “valid” text
that has not been seen before [Kleinberg and Mullainathan ’24]

Underlying language

Training set
Learnt language

14

MathemaFcal FormulaFon
Classical work on language identification by Gold [Gol 67] and Angluin [Ang 79,80]

Countable domain (e.g.,), countable collection of languages

Language identification is an infinite two-player game between the learner and the adversary:

The adversary picks a target language

In every round , the adversary presents some , the learner guesses

The learner wins if there is some (finite) such that for all and

The adversary presents a complete enumeration (for every there is some such that)

The learner can access through a membership oracle (“is ?”) and subset oracle (“is ?”)

 is identifiable (in the limit) if there is a learner that wins for all and for all enumerations of

𝒳 {0,1}*, ℕ ℒ = {L1, L2, …}

K ∈ ℒ

t = 1,2,3,… xt ∈ K it ∈ ℕ

t* ∈ ℕ t′ ≥ t* : it* = it′
Lit′

= K

w ∈ K t xt = w

ℒ w ∈ Li Li ⊆ Lj

ℒ K ∈ ℒ K

15

MathemaFcal FormulaFon (Cont.)
Variation of the model proposed by [KM 24]: generation in the limit

Countable domain (e.g.,), countable collection of infinite languages

Language generation is an infinite two-player game between the learner and the adversary:

The adversary picks a target language

In every round , the adversary presents some , the learner guesses

The learner wins if there is some (finite) such that for all and

The adversary presents a complete enumeration (for every there is some such that)

The learner can access through a membership oracle (“is ?”) and subset oracle (“is ?”)

 is generatable (in the limit) if there is a learner that wins for all and for all enumerations of

𝒳 {0,1}* ℒ = {L1, L2, …}

K ∈ ℒ

t = 1,2,3,… xt ∈ K wt ∈ 𝒳

t* ∈ ℕ t′ ≥ t* : wt′
∈ K wt′

∉ {x1, …, xt′
}

w ∈ K t xt = w

ℒ w ∈ Li Li ⊆ Lj

ℒ K ∈ ℒ K

16

Remarks

The model, while abstract, captures many aspects of LLM training

The learner does not receive any feedback

The learner sees only “positive” examples

The learner is trying to learn an unseen subset of the language

Crucially, the learner cannot ask if w ∈ K

Adversary
Learner

x1

w1

x2

w2

⋮

17

Remarks (ConFnued)

What makes the problem of identification (and generation) hard?

Consider and assume that

If then at some round the learner will see some so it knows

If then will always be consistent with the training set!

Seeing only positive examples in the training process does not allow the learner to distinguish such
languages

Li ≠ Lj K = Lj

Lj ⊈ Li t xt ∈ Lj, xt ∉ Li K ≠ Li

Lj ⊆ Li Li

Adversary
Learner

x1

w1

x2

w2

⋮

Consider the following setting [KM 24, CP 24]

Angluin’s result [Ang 80] implies that is not identifiable in the limit

Is generatable in the limit?

Yes, even with one sample! In every step output an unseen example from

𝒳 = ℤ

Li = {−i, − i + 1, − i + 2, − i + 3,…}

ℒ = {ℤ, L1, L2, …}

ℒ

ℒ

{x1 + 1,x1 + 2,…}

18

Example

19

IdenFficaFon vs. GeneraFon

Theorem (informal):
Almost all interesting countable collections of languages are not identifiable in the limit.

[Gold 1967, Angluin 1979, 1980]

Theorem (informal):
All countable collections of languages are generatable in the limit.

[Kleinberg and Mullainathan 2024]

This applies even to regular languages…

There exist algorithms that learn to generate new strings without hallucinating!

20

The Algorithm of Kleinberg and Mullainathan

Theorem (informal):
All countable collections of languages are generatable in the limit.

[Kleinberg and Mullainathan 2024]

Critical languages at time :

Consistency: Every contains the training set enumerated so far

Inclusions: , where is the first consistent language

 Key property: Target language becomes critical after some finite time and remains so!

 Algorithm: Create chain of critical languages, output from the last one (whose index is at most)

C(t)
1 , C(t)

2 , … t

C(t)
i St

C(t)
1 ⊇ C(t)

2 ⊇ … C(t)
1

K t

t

21

Validity vs. Breadth
The learner of [KM 24] suffers from “mode-collapse”: it keeps generating from a “decreasing” subset of
Main open question of [KM 24]:

Is there an inherent trade-off between between generating valid strings from and generating from a
“broad” subset of ?
No formal notion of “breadth” was provided

K

K
K

Series of follow-up works studying this (and related) problems

[Kalavasis, Mehrotra, V, STOC’25], [Kalavasis, Mehrotra, V, ’24], [Charikar, Pabbaraju, ’24]
Proposed and studied very similar notions of breadth

[Peale, Raman, Reingold, ICML’25], [Kleinberg, Wei, ’25]
Studied different “fine-grained” notions of breadth

[Li, Raman, Tewari, ’24]
Used a learning-theoretic lens

[Raman, Raman, ICML’25]
Studied a “noisy” variant

22

Outline of the Talk

Motivation: CS and Language

Theoretical Model

Overview of our Definitions and Results

Overview of (some) Proofs

23

GeneraFon with Breadth

Definition (exact breadth):
We say that a learner achieves exact breadth in the generation game if for every target
language and for every enumeration of there is some such that for all it
holds

K K t* t ≥ t*
G(St) = K

[Kalavasis, Mehrotra, V 2024a]

We view the learner as a mapping from to an (infinite) subset of G St = {x1, …, xt} 𝒳

Definition (approximate breadth):
We say that a learner achieves approximate breadth in the generation game if for every
target language and for every enumeration of there is some such that for all
it holds

K K t* t ≥ t*
G(St) ⊆ K, |K∖G(St) | < ∞

[Kalavasis, Mehrotra, V 2024a]

Definition (infinite coverage):
We say that a learner achieves infinite coverage in the generation game if for every target
language and for every enumeration of there is some such that for all it
holds

K K t* t ≥ t*
G(St) ⊆ K, |G(St) | = ∞

[Kalavasis, Mehrotra, V 2024a]

K

|K∖G(St) | < ∞

K

K = G(St)

K

|G(St) | = ∞

24

Main Results I

Main Takeaway
LLMs cannot avoid hallucinations while achieving any of these notions of breadth, for most collections of languages

[Kalavasis, Mehrotra, V 2024a, 2024b]

Generation [KM 24]
Infinite Coverage [KMV 24a]
All countable collections

⟺
⟺

Approximate Breadth [KMV 24a]
Weak Angluin’s Condition [KMV 24b]

⟺
⟺

Exact Breadth [KMV 24a]
Identification [Gold 67]
Angluin’s Condition [Ang 80]

⟺
⟺

25

Main Results II

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Weak Angluin’s Condition
[KMV 24b, CP 24]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements All Countable Collections All Countable Collections All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

26

Stable GeneraFon

Definition (stability):
We say that a learner achieves stability in the generation game if for every target language and for every
enumeration of there is some such that for all it holds

K
K t* t ≥ t* G(St) = G(St*)

[Kalavasis, Mehrotra, V 2024a]

The algorithms from [KM 24] and our works change their outputs infinitely often during the game

Recall that Gold [Gol 67] required that the guesses of the algorithm stabilize

Moreover, if an algorithm “knows” it has learnt, then it can stabilize

How does the previous landscape change when we require stable generators?

Stability in identification comes for free:
A language is identifiable in the limit by any algorithm if and only if it is identifiable in the limit by a stable
algorithm [KMV 24a, probably earlier works too…]

27

Main Results III

Stable Generators
No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements Characterization ?
(Not all countable

collections)
Characterization ? All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

28

Learning Curves of GeneraFon (with or without Breadth)
Consider the following distributional setting

Countable domain

Countable collection of languages

Adversary picks a target distribution supported entirely on some

Learner gets as input examples drawn i.i.d. from and outputs some

Error of the learner

𝒳

ℒ

D K ∈ ℒ

n D G(Sn) ⊆ 𝒳

er(G(Sn) = 1{G(Sn) does not satisfy the notion of breadth}

Main question: fixing some and taking , how quickly does the error drop?D n → ∞

[KMV 24a, 24b]: We provide a characterization of the shape of the learning curves for various notions of
generation with breadth by establishing tight connections to the online setting

Error

Samples

e−c1(D)⋅n

e−c2(D)⋅n

29

Outline of the Talk

Motivation: CS and Language

Theoretical Model

Overview of our Definitions and Results

Overview of (some) Proofs

30

GeneraFon with Infinite Coverage and no HallucinaFons

Recall the algorithm of [KM’24]: Create chain of critical languages, output from the last one (whose index
is at most)

Critical languages at time :

Consistency: Every contains the training set enumerated so far

Inclusions: , where is the first consistent language

 This algorithm achieves infinite coverage but changes output infinitely often. Is this avoidable?

t

C(t)
1 , C(t)

2 , … t

C(t)
i St

C(t)
1 ⊇ C(t)

2 ⊇ … C(t)
1

Theorem (informal)
Any algorithm that achieves generation with infinite coverage and no hallucinations for all countable must be
unstable
Immediate Corollary: The generator cannot know it is generating correctly

ℒ

[Kalavasis, Mehrotra, V 2024b]

31

GeneraFon with Infinite Coverage and no HallucinaFons

Proof (Sketch):
Let

Pretend that and start enumerating

At some time the learner must output that doesn’t contain 1 and contains some
(generation property)

Pretend that : keep enumerating until you hit , enumerate 1 instead of and skip
….

 The construction guarantees that (i) either the algorithm doesn’t generate correctly or (ii) changes infinitely often

𝒳 = ℕ, Li = ℕ∖{i}, ℒ = {ℕ, L1, L2, …}

K = L1 2,3,4,…,

t1 G(St1) i1 > t1 + 1

K = Li1 i1 i1 i1

Theorem (informal)
Any algorithm that achieves generation with infinite coverage and no hallucinations for all countable must be
unstable
Immediate Corollary: The generator cannot know it is generating correctly

ℒ

[Kalavasis, Mehrotra, V 2024b]

32

Main Results II

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Weak Angluin’s Condition
[KMV 24b, CP 24]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements All Countable Collections All Countable Collections All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

33

Main Results III

Stable Generators
No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements Characterization ?
(Not all countable

collections)
Characterization ? All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

34

Background: Angluin’s CondiFon

Definition (informal):
A countable collection of languages satisfies Angluin’s condition if:

For all there is some finite tell-tale subset for which the following holds:
For all either or is not a proper subset of

ℒ
L ∈ ℒ TL ⊆ L
L′ ≠ L TL ⊈ L′ L′ L

[Angluin 1980]

Theorem (informal):
A countable collection of languages is identifiable in the limit if and only if it satisfies Angluin’s conditionℒ

[Angluin 1980]

Angluin completely characterized Gold’s setting in 1980

Consider the following setting [KM 24, CP 24]

 does not satisfy Angluin’s condition:
Suffices to find some such that for all finite there exists some :

 and is a proper subset of

Pick .
Consider any finite and let be its smallest element
Then, and

𝒳 = ℤ

Li = {−i, − i + 1, − i + 2, − i + 3,…}

ℒ = {ℤ, L1, L2, …}

ℒ
L* ∈ ℒ T ⊆ L* LT ∈ ℒ

T ⊆ LT LT L*

L* = ℤ
T ⊆ ℤ iT

T ⊆ LiT LiT ⊊ L*

35

Example: Angluin’s CondiFon

36

GeneraFon with Exact Breadth and no HallucinaFons

Theorem (informal):
A countable collection of languages is generatable with exact breadth and no hallucinations in the limit
if and only if satisfies Angluin’s condition

ℒ

[Kalavasis, Mehrotra, V 2024b, Charikar, Pabbaraju 2024]

Recall our goal is to achieve G(St) = K

Theorem (informal):
If a countable collection of languages satisfies Angluin’s condition, then the algorithm of [KM 24]
achieves generation with exact breadth and no hallucinations in the limit

ℒ

[Kalavasis, Mehrotra, V 2024a]

Same result shown by [CP’24]

The algorithm of [KM 24] achieves exact breadth with no hallucinations iff satisfies Angluin’s conditionℒ

Main idea: At some point . Then, for all either or , so no language after is
critical

TK ⊆ St L ≠ K St ⊈ L L ⊈ K K

37

Lower Bound ConstrucFon
We provide a general construction which shows that every notion of breadth that satisfies a certain
“uniqueness” property cannot be achieved if does not satisfy Angluin’s conditionℒ

Uniqueness property: we say that a notion of breadth satisfies the uniqueness property if every generator
can satisfy this property for at most one language at a time

e.g., exact breadth satisfies the uniqueness property

Theorem (informal):
If a notion of breadth satisfies the uniqueness property, then no algorithm can generate from in a way
that satisfies this notion of the breadth if does not satisfy Angluin’s condition

ℒ
ℒ

[Kalavasis, Mehrotra, V 2024a]

38

Lower Bound ConstrucFon
Theorem (informal):
If a notion of breadth satisfies the uniqueness property, then no algorithm can generate from

 in a way that satisfies this notion of the breadth if does not satisfy Angluin’s conditionℒ ℒ

[Kalavasis, Mehrotra, V 2024a]

Proo (Sketch):
Since does not satisfy Angluin’s condition there exists such that for all finite there is
some with and

Pretend that and start enumerating it

At some time the generator must satisfy the notion of breadth for

Pretend that and continue the enumeration to one of (this can be achieved)

At some time the generator must satisfy the notion of breadth for (so not for)

Pretend that and continue with an enumeration of ….

ℒ L* ∈ ℒ T ⊆ L*
LT ∈ ℒ T ⊆ LT LT ⊊ L*

K = L*

t1 L*

K = LSt1
LSt1

t2 > t1 LSt1
L*

K = L* L*

39

Main Results II

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Weak Angluin’s Condition
[KMV 24b, CP 24]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements All Countable Collections All Countable Collections All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

40

Weak Angluin’s CondiFon
Intuition for relaxation: it is easier to handle proper subsets of that miss only finitely many elements of
than subsets that miss infinitely many elements

L L

Definition (informal):
A countable collection of languages satisfies the weak Angluin’s condition if:

For all there is some finite tell-tale subset for which the following holds:
For all either or is not a proper subset of or is a proper subset of with

ℒ
L ∈ ℒ TL ⊆ L
L′ ≠ L TL ⊈ L′ L′ L L′ L |L∖L′ | < ∞

[Kalavasis, Mehrotra, V 2024b, Charikar, Pabbaraju 2024]

Consider the following setting [KM 24, CP 24]

 does not satisfy the weak Angluin’s condition:
Suffices to find some such that for all finite there exists some :

 , is a proper subset of , and

Pick .
Consider some finite and let be its smallest element
Then, and and

𝒳 = ℤ

Li = {−i, − i + 1, − i + 2, − i + 3,…}

ℒ = {ℤ, L1, L2, …}

ℒ
L* ∈ ℒ T ⊆ L* LT ∈ ℒ

T ⊆ LT LT L* |L*∖LiT | = ∞

L* = ℤ
T ⊆ ℤ iT

T ⊆ LiT LiT ⊊ L* |L*∖LiT | = ∞

41

Example 1: Weak Angluin’s CondiFon

Consider the following setting [KM 24, CP 24]

 satisfies the weak Angluin’s condition: choose

Notice that for all it holds that , hence the condition is satisfied

𝒳 = ℕ

Li = ℕ∖{i}

ℒ = {L0 = ℕ, L1, L2, …}

ℒ Ti = {i + 1}, i ≥ 0

i, j |Li∖Lj | ≤ 2

42

Example 2: Weak Angluin’s CondiFon

43

GeneraFon with Approximate Breadth and no HallucinaFons

Theorem (informal):
A countable collection of languages is generatable with approximate breadth and no hallucinations in the limit if
and only if it satisfies the weak Angluin’s condition

ℒ

[Kalavasis, Mehrotra, V 2024b, Charikar, Pabbaraju 2024]

Recall our goal is to achieve |K∖G(St) | < ∞, G(St) ⊆ K

It is not always easy to check if satisfies either Angluin’s condition or the weak Angluin’s conditionℒ

Hence, it is useful to have an algorithm that achieves best-of-three-worlds

Theorem (informal):
The following holds for the algorithm of [KM 24]

If satisfies Angluin’s condition then it generates with exact breadth and no hallucinations
If satisfies the weak Angluin’s condition then it generates with approximate breadth and no hallucinations
If does not satisfy the weak Angluin’s condition then it generates with infinite coverage and no hallucinations

ℒ
ℒ
ℒ

[Kalavasis, Mehrotra, V 2024b]

44

Lower Bound ConstrucFon
We provide a general construction which shows that every notion of breadth that satisfies a certain “finite
non-uniqueness” property cannot be achieved if does not satisfy the weak Angluin’s conditionℒ

Construction: modification of the “uniqueness”-based construction

Finite non-uniqueness property: we say that a notion of breadth satisfies the finite non-uniqueness property
if a generator can satisfy this property simultaneously for two languages only if they differ on finitely many
elements

e.g., approximate breadth satisfies the uniqueness property

Theorem (informal):
If a notion of breadth satisfies the finite non-uniqueness property, then no algorithm can generate from
in a way that satisfies this notion of the breadth if does not satisfy the weak Angluin’s condition

ℒ
ℒ

[Kalavasis, Mehrotra, V 2024a]

45

Main Results II

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Weak Angluin’s Condition
[KMV 24b, CP 24]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements All Countable Collections All Countable Collections All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

46

GeneraFon with Zero Missing Element and Finite HallucinaFons

Theorem (informal):
A countable collection of languages is generatable with finite hallucinations and zero missing breadth in the limit
if and only if it satisfies the weak Angluin’s condition

ℒ

[Kalavasis, Mehrotra, V 2024b, Charikar, Pabbaraju 2024]

Recall our goal is to achieve |G(St)∖K | < ∞, G(St) ⊇ K

Theorem (informal):
A countable collection of languages is generatable by a stable generator with finite hallucinations and zero
missing breadth in the limit if and only if it satisfies the weak Angluin’s condition

ℒ

[Kalavasis, Mehrotra, V 2024b, Charikar, Pabbaraju 2024]

For this definition, we can achieve stable generation

47

GeneraFon with Zero Missing Element and Finite HallucinaFons

The algorithm is based on a modification of [KM 24]

Recall the algorithm of [KM 24]. In every round do the following:
Consider only the first languages:
Create the set of critical languages within
Output the largest indexed language in

t
t ℒt = {L1, …, Lt}

Ct ℒt
Ct

Modification: In every round do the following:
Consider only the first languages:
Create the set of critical languages within
Let be the largest indexed language in
Create the set of languages in that satisfy (requires new oracle)
Output the smallest indexed language in

t
t ℒt = {L1, …, Lt}

Ct ℒt
L* Ct

Ft L ∈ Ct |L∖L* | < ∞
Ft

Lj

Li

St

48

Lower Bound
Follows immediately from the “finite non-uniqueness” construction since this notion of breadth satisfies the
finite non-uniqueness condition

49

Main Results II

No Hallucinations Finite Hallucinations Infinite Hallucinations

Zero Missing Elements Angluin’s Condition
[Ang 80]

(i.e., Exact Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Finite Missing Elements Weak Angluin’s Condition
[KMV 24b, CP 24]

(i.e., Approximate Breadth)

Weak Angluin’s Condition
[KMV 24b, CP 24] All Countable Collections

Infinite Present Elements All Countable Collections All Countable Collections All Countable Collections

|G(St)∖K | = 0 |G(St)∖K | < ∞ |G(St)∖K | = ∞

|K∖G(St) | = 0

|K∖G(St) | < ∞

|K ∩ G(St) | = ∞

50

(Immediate) Next DirecFons
Extension of validity vs. breadth trade-off to the prompted generation setting of [KM 24]

Complete the characterization of stable generation

Extension to the “agnostic” setting where the adversary can give incorrect information [RR 25]

Weakening of the definition (for all target languages, for all enumerations…)
For some collections, we can achieve validity and breadth for all except for one target language
Allow the learner to generate more than one texts (similar to what LLMs are doing)

More fine-grained versions of the trade-off
Subsequently, Kleinbeg and Wei [KW 25] studied such versions based on a notion of “density”

Computationally efficient algorithms for more structured settings

51

Conclusion
In the era of LLMs, one of the contributions TCS can make is to provide the right definitions and
abstractions to study their behavior, and formally argue about their abilities and limitations

In a similar spirit as in fairness, clustering, distributed systems,…

Kleinberg and Mullainathan [KM 24] proposed an abstract model for generation and showed that
generation is a sharply different problem from identification

[KM 24] initiated the discussion about the tension between validity and breadth

Our works and others have provided several formal notions of breadth and showed a provable tension
between validity and breadth

How can we circumvent the impossibility results?
A different set of our result shows that negative examples help (i.e., elements not in ,) which is also
observed in practice (e.g., negative example through RLHF)
Other type of useful information?

K

COLT 2025 Tutorial on “Language Generation in the Limit” [Charikar, Mehrotra, Pabbaraju, Peale, V.]

