
Generation through the lens
of learning theory

Vinod Raman
Joint work with Jiaxun Li and Ambuj Tewari

A new paradigm in machine learning

• For more than 50 years, predictive ML has been a cornerstone for
practitioners and theorists

• Tasks like classification and regression have been extensively
studied due to applications to:
• Face recognition
• Autonomous vehicles
• Recommendation systems
• Spam filtering

• Recently, however, a new paradigm in ML has emerged:

Generation.

Generation

• In Generative ML the goal is not to predict but to create.
• In language modeling, we generate coherent text in response to a prompt
• In drug development, we create new candidate molecules
• In movie production, we render new animations

• Generative ML is revolutionizing how we think and do:
• Natural Language Processing
• Computer Vision
• Chemistry/Biology
• and much more

Great, but where is the (learning) theory?

• The theoretical foundations of Generative ML lag far behind its
predictive counterpart.

• One reason is that the generation is fundamentally an
unsupervised task.

• This makes it challenging to define a loss function – the primary
workhorse of predictive ML.

Our contributions

We aim to close this gap between learning theory and generative
machine learning.
1. We unify existing paradigms of generation through a binary

hypothesis 𝐻 ⊆ 0, 1 𝑋 defined over a countable abstract
instance space 𝑋.

2. We formalize new paradigms of generation called “uniform” and
“non-uniform” generation and provide their characterizations.

3. We show that (uniform) generation and prediction (i.e. PAC and
online learnability) are incomparable – there are classes that are
generatable but not predictable and vice versa.

The story so far…

• In 1967, Mark Gold studied the problem of language identification
in the limit.

• There is a countable set of strings 𝑈 and a public family of
languages ℒ = {𝐿1, 𝐿2, … } where 𝐿𝑖 ⊂ 𝑈.

• An adversary secretly picks a language 𝐾 ∈ ℒ and begins
enumerating the strings 𝑤1, 𝑤2, … in 𝐾 over rounds 𝑡 = 1, 2, …

• After observing 𝑤𝑡 in round 𝑡, you make a prediction 𝐿𝑡 ∈ ℒ.
• You identify 𝐾 in the limit if there exists a 𝑡⋆ ∈ ℕ such that 𝐿𝑠 = 𝐾

for all 𝑠 ≥ 𝑡⋆.
• ℒ is identifiable in the limit if you can identify every 𝐾 ∈ ℒ.

The story so far…

Gold [1967] show that many natural families of languages are not
identifiable in the limit.

This theorem is often interpreted as a negative result:
Language Identification is hard.

Theorem 1 (Gold [1967])
The family of regular languages is not identifiable in the limit.

The story so far…

Dana Angluin, in a series of two works, gives a characterization of
which language families are identifiable in the limit.

Angluin’s characterization rules out the vast majority of natural
language families.

Theorem 2 (Angluin [1979, 1980])
A language family ℒ is identifiable in the limit if and only if for every
𝐿 ∈ ℒ, there exists a finite 𝑆 ⊂ 𝐿 such that for every 𝐿′ ∈ ℒ:

𝑆 ⊂ 𝐿′ ⇒ 𝐿′ ⊄ 𝐿

The story so far…

• The Gold-Angluin model inspired a large amount of discussion,
including positive and negative criticisms.

• Some argued that an adversarial Nature is unrealistic and
proposed relaxations under which identifiability is possible.

• Regardless, the Gold-Angluin model stands as one of the earliest
works in machine learning.

The story so far…

44 years later, Jon Kleinberg and Sendhil Mullainathan revisit the
classical setup with a modern twist:

 What about generation instead of identification?

 Is it easier to eventually generate new strings from the secret
language as opposed to identifying it?

The KM Model

• There is a countable set of strings 𝑈 and a public family of
languages ℒ = {𝐿1, 𝐿2, … } where 𝐿𝑖 ⊂ 𝑈 and 𝐿𝑖 = ∞.

• An adversary secretly picks a language 𝐾 ∈ ℒ and begins
enumerating the strings 𝑤1, 𝑤2, … in 𝐾 over rounds 𝑡 = 1, 2, …

• After observing 𝑤𝑡 in round 𝑡, you make a prediction ෝ𝑤𝑡 ∈ 𝑈.
• You generate from 𝐾 in the limit if there exists a 𝑡⋆ ∈ ℕ such that

ෝ𝑤𝑠 ∈ 𝐾 ∖ {𝑤1, … , 𝑤𝑠} for all 𝑠 ≥ 𝑡⋆.

• ℒ is generatable in the limit if you can generate from 𝐾 for every
𝐾 ∈ ℒ.

The KM Model

Remarkably, unlike identification, KM [2024] show that every
countable language family is generatable in the limit.

Theorem 3 (KM [2024])
Every countable language family ℒ is generatable in the limit.

Moreover, for every finite ℒ, generation is possible after observing
only a constant number of distinct strings.

Theorem 4 (KM [2024])
If ℒ < ∞, there exists a 𝑐 ∈ ℕ such that generation is
possible after observing 𝑐 distinct strings from 𝐾.

Beyond language identification/generation

• Both the Gold-Angluin and KM interpret their results with respect
to language generation.

• However, nothing is special about languages – the same results
hold for generating abstract objects (images, molecules, etc …)

• In statistical learning theory (SLT), we work with abstract spaces.

Can these results be formulated through the lens of SLT?

Generation in the lens of SLT

• Let 𝑋 be an abstract countable instance space (e.g. images,
molecules, …)

• Let 𝐻 ⊆ {0, 1}𝑋 be a collection of functions that map instances to
a binary label {0, 1} (e.g. neural networks, transformers, …)

• For every ℎ ∈ 𝐻, define supp ℎ ≔ {𝑥 ∈ 𝑋: ℎ 𝑥 = 1}.

Generation in the lens of SLT

In Language generation:
• 𝑋 is the set of valid strings.
• Each ℎ ∈ 𝐻 is a language over 𝑋 parameterized by supp(ℎ).
• 𝐻 is a language family.

Assumption 1.
A class 𝐻 ⊆ {0, 1}𝑋 satisfies the Uniformly Unbounded
Support (UUS) property if supp ℎ = ∞ for all ℎ ∈ 𝐻.

Generatability in the limit

• A generator is a map 𝐺: 𝑋⋆ → 𝑋.
• We can use generators to rigorously define what it means for 𝐻 to

be “generatable in the limit.”

Definition 1(KM [2024]).
Let 𝐻 ⊆ {0, 1}𝑋 be any class that satisfies the UUS property.
𝐻 is generatable in the limit if there exists a generator 𝐺
such that for every ℎ ∈ 𝐻 and every enumeration 𝑥1, 𝑥2 … of
supp(ℎ) there exists a 𝑡⋆ ∈ ℕ such that for all 𝑠 ≥ 𝑡⋆

𝐺 𝑥1, … , 𝑥𝑠 ∈ supp(ℎ) ∖ {𝑥1, … , 𝑥𝑠}.

Beyond “Generatability in the Limit”

• In Definition 1, the time step 𝑡⋆ after which the Generator must be
perfect can depend on:

1. The hypothesis ℎ chosen by the adversary and
2. The enumeration of supp(ℎ).

• This is unsatisfying as, in practice, we would like to know when our
generator will be perfect.

• To this end, we can go beyond “generatability in the limit” by
swapping the order of quantifiers.

Non-uniform Generatability

Definition 2 (Non-uniform Generatability).
Let 𝐻 ⊆ {0, 1}𝑋 be any class that satisfies the UUS
property. 𝐻 is non-uniformly generatable if there exists a
generator 𝐺 such that for every ℎ ∈ 𝐻 there exists a 𝑑⋆ such
that for every sequence 𝑥1, 𝑥2, … ⊆ supp(ℎ), if there exists a
𝑡⋆ ∈ ℕ such that {𝑥1, … , 𝑥𝑡⋆} = 𝑑⋆, then for all 𝑠 ≥ 𝑡⋆

𝐺 𝑥1, … , 𝑥𝑠 ∈ supp(ℎ) ∖ {𝑥1, … , 𝑥𝑠}.

Uniform Generatability

The strongest form of generatability follows by only allowing a
dependence on 𝐻.

Definition 3 (Uniform Generatability).
Let 𝐻 ⊆ {0, 1}𝑋 be any class that satisfies the UUS
property. 𝐻 is uniformly generatable if there exists a
generator 𝐺 and 𝑑⋆ such that for every ℎ ∈ 𝐻 and every
sequence 𝑥1, 𝑥2 … ⊆ supp(ℎ), if there exists a 𝑡⋆ ∈ ℕ such
that {𝑥1, … , 𝑥𝑡⋆} = 𝑑⋆, then for all 𝑠 ≥ 𝑡⋆

𝐺 𝑥1, … , 𝑥𝑠 ∈ supp(ℎ) ∖ {𝑥1, … , 𝑥𝑠}.

Comparisons of Generatability

• It turns out that:
Uniform Gen. ⇒ Non-uniform Gen. ⇒ Gen. in the limit.

• Moreover, this can be tight:

Lemma 1.
There exists classes 𝐻1, 𝐻2 ⊆ 0, 1 𝑋satisfying the UUS
property such that

• 𝐻1 is gen. in the limit but not non-uniformly gen.
• 𝐻2 is non-uniformly gen. but not uniformly gen.

Summary of existing results

Theorem 3 and 4 (KM [2024])
Let 𝐻 ⊆ {0, 1}𝑋 satisfy the UUS property.
• If 𝐻 is countable, then 𝐻 is generatable in the limit.
• If 𝐻 is finite, then 𝐻 is uniformly generatable.

Summary of existing results

• Unfortunately, KM [2024] do not provide a characterization of
which classes are uniformly and non-uniformly generatable.

• In fact, they don’t provide a characterization of which classes are
generatable in the limit!

• We aim to close some of these gaps by answering:

What are necessary and sufficient conditions for a class 𝐻 to be
uniformly or non-uniformly generatable?

Towards a characterization of generatability

• In learning theory, such conditions are often expressed in terms of
combinatorial dimensions.

• A combinatorial dimension is a function
dim ∶ 2 0,1 𝑋

→ ℕ ∪ ∞

 such that dim(𝐻) captures the expressivity of 𝐻.
• For example, the VC/Littlestone dimension characterizes

PAC/online learnability of a class 𝐻 ⊆ {0, 1}𝑋.
• In this work, we present a new dimension called the Closure

dimension.

Closure Dimension

Definition 1(Closure Dimension)
The Closure dimension of 𝐻 ⊆ {0, 1}𝑋, denoted 𝐶(𝐻), is
the largest 𝑑 ∈ ℕ for which there exists distinct 𝑥1, … , 𝑥𝑑 ∈
𝑋𝑑 such that 𝑆 𝐻, 𝑥1:𝑑 ≥ 1 and

ሩ

ℎ∈𝑆 𝐻,𝑥1:𝑑

supp(ℎ) < ∞

where 𝑆 𝐻, 𝑥1:𝑑 ≔ {ℎ ∈ 𝐻: 𝑥1:𝑑 ⊂ supp(ℎ)}.
If this is true for arbitrarily large 𝑑 ∈ ℕ, then we say 𝐶 𝐻 =
∞. If it is not true for 𝑑 = 1, then we say 𝐶 𝐻 = 0.

Closure Dimension

• If 𝐶 𝐻 = 𝑑, you can predict perfectly after observing any 𝑑 + 1
distinct instances since

ሩ

ℎ∈𝑆 𝐻,𝑥1:𝑑+1

supp(ℎ) = ∞.

• If 𝐶 𝐻 = ∞, the adversary can force a mistake at arbitrarily large
𝑡 ∈ ℕ since for every 𝑡 ∈ ℕ, there exists 𝑥1, … , 𝑥𝑛 such that

ሩ

ℎ∈𝑆 𝐻,𝑥1:𝑛

supp(ℎ) ∖ {𝑥1, … , 𝑥𝑛} = 0.

A Characterization of Uniform Generatability

Theorem 5.
Let 𝐻 ⊆ 0, 1 𝑋satisfy the UUS property. The following
statements are equivalent.

• 𝐻 is uniformly generatable
• 𝐶 𝐻 < ∞

Improvements over KM [2024]

• KM [2024] showed that all finite classes are uniformly generatable.
• We improve upon this result by giving an uncountably infinite class

that is uniformly generatable.

Example 1.
Let 𝑋 = ℤ and take 𝐻 = {𝑥 ↦ 1 𝑥 ≤ 0 𝑜𝑟 𝑥 ∈ 𝐴 : 𝐴 ∈ 2ℕ}.
Then, 𝐻 is uncountably large, satisfies the UUS property, and
is uniformly generatable.

• In fact, Lemma 1 shows that countableness is not necessary for
generatability in the limit!

What about Non-uniform Generatability?

We can use the Closure dimension to also provide a
characterization of non-uniform generatability.

Theorem 6.
Let 𝐻 ⊆ 0, 1 𝑋satisfy the UUS property. The following
statements are equivalent.

• 𝐻 is non-uniformly generatable.
• There exists a countable sequence 𝐻1, 𝐻2, … such that

𝐻 = 𝑖∈ℕڂ 𝐻𝑖 and 𝐶 𝑖=1ڂ
𝑛 𝐻𝑖 < ∞ for all 𝑛 ≥ 1.

What about non-uniform generatability?

Theorem 6 implies that all countable classes are non-uniformly
generatable!

This also provides an improvement* over KM [2024] since
Non-uniformly generatable ⇒ Generatable in the limit.

Corollary 1.
Let 𝐻 ⊆ 0, 1 𝑋satisfy the UUS property. If 𝐻 is countable,
then 𝐻 is non-uniformly generatable.

What about generatability in the limit?

Open Question.
What characterizes generatability in the limit?

Uniform Generation vs. Prediction

• In prediction, we are given an instance 𝑥 ∈ 𝑋, and the goal is
accurately predict its true label 𝑦 ∈ 0, 1 .

• We can measure the predictability of a hypothesis class through
PAC and online learnability.

• In particular, a class 𝐻 ⊆ 0, 1 𝑋 is PAC/online learnable if and
only if its the VC/Littlestone dimensions are finite.

Uniform Generation vs. Prediction

Surprisingly, we show that these two notions are incompatible.

Theorem 7.
There exists countable classes 𝐻1, 𝐻2 ⊆ 0, 1 𝑋 satisfying
the UUS property such that:

• 𝑉𝐶 𝐻1 = ∞ but 𝐶 𝐻1 = 0.
• 𝐿 𝐻2 = 2 but 𝐶 𝐻2 = ∞.

Generation and Prediction are different paradigms in machine
learning.

Summary

• We formalized old and new notions of generatability in the
language of learning theory.

• We strengthen the results of KM [2024] by showing that all
countable classes are non-uniformly generatable.

• By taking a learning-theoretic lens, we uncover fundamental
differences between prediction and generation.

Extensions and Future Directions

We have barely scratched the surface.
1. Randomized Generatability: a randomized generator is a map 𝐺: 𝑋⋆ →

Π 𝑋 , where Π(𝑋) denotes the set of all measures. What is the right
notion of randomized generatability?

2. Agnostic Generatability: what is the right model to account for the
fact that we may not observe a perfect enumeration of positive
instances?

3. Generatability + “X”: which classes are generatable privately, fairly,
robustly, …?

4. Probabilistic Generatability: what characterizes the probabilistic
version of our setting where positive instances are drawn iid?

Extensions and Future Directions

5. Prompted Generatability: how do we account for prompts in our
model? Will the characterization of generatability change?

6. Boosting for Generatability: given a weak, randomized generator,
is it possible to “boost” it into to a strong, randomized
generator?

7. Distributed Generatability: how much communication is needed
to generate effectively if positive examples are distributed
amongst 𝑁 parties?

8. and many, many more…

Thanks for listening!
Questions?

References

1. Gold M. Language Identification in The Limit. Information and
Control, 1967.

2. Angluin D. Finding patterns common to a set of strings. Symposium
on Theory of Computation, 1979.

3. Angluin D. Inductive inference of formal languages from positive
data. Information and Control, 1980.

4. Yang Y, Piantadosi S. One model for the learning of languages.
Proceedings of National Academy of Sciences, 1988.

5. Kleinberg J, Mullainathan S. Generation in the Limit. arXiv, 2024.
6. Lu J, Raman V, Tewari A. Generation through the lens of learning

theory. arXiv, 2024.

	Slide 1: Generation through the lens of learning theory
	Slide 2: A new paradigm in machine learning
	Slide 3: Generation
	Slide 4: Great, but where is the (learning) theory?
	Slide 5: Our contributions
	Slide 6: The story so far…
	Slide 7: The story so far…
	Slide 8: The story so far…
	Slide 9: The story so far…
	Slide 10: The story so far…
	Slide 11: The KM Model
	Slide 12: The KM Model
	Slide 13: Beyond language identification/generation
	Slide 14: Generation in the lens of SLT
	Slide 15: Generation in the lens of SLT
	Slide 16: Generatability in the limit
	Slide 17: Beyond “Generatability in the Limit”
	Slide 18: Non-uniform Generatability
	Slide 19: Uniform Generatability
	Slide 20: Comparisons of Generatability
	Slide 21: Summary of existing results
	Slide 22: Summary of existing results
	Slide 23: Towards a characterization of generatability
	Slide 24: Closure Dimension
	Slide 25: Closure Dimension
	Slide 26: A Characterization of Uniform Generatability
	Slide 27: Improvements over KM [2024]
	Slide 28: What about Non-uniform Generatability?
	Slide 29: What about non-uniform generatability?
	Slide 30: What about generatability in the limit?
	Slide 31: Uniform Generation vs. Prediction
	Slide 32: Uniform Generation vs. Prediction
	Slide 33: Summary
	Slide 34: Extensions and Future Directions
	Slide 35: Extensions and Future Directions
	Slide 36: Thanks for listening!
	Slide 37: References

