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A new paradigm in machine learning

• For more than 50 years, predictive ML has been  a cornerstone for 
practitioners and theorists 

• Tasks like classification and regression have been extensively 
studied due to applications to:
• Face recognition
• Autonomous vehicles
• Recommendation systems
• Spam filtering

• Recently, however, a new paradigm in ML has emerged:

Generation.



Generation

• In Generative ML the goal is not to predict but to create.
• In language modeling, we generate coherent text in response to a prompt
• In drug development, we create new candidate molecules
• In movie production, we render new animations

• Generative ML is revolutionizing how we think and do:
• Natural Language Processing
• Computer Vision
• Chemistry/Biology
• and much more



Great, but where is the (learning) theory?

• The theoretical foundations of Generative ML lag far behind its 
predictive counterpart.

• One reason is that the generation is fundamentally an 
unsupervised task.

• This makes it challenging to define a loss function – the primary 
workhorse of predictive ML.



Our contributions

We aim to close this gap between learning theory and generative 
machine learning. 
1. We unify existing paradigms of generation through a binary 

hypothesis 𝐻 ⊆ 0, 1 𝑋 defined over a countable abstract 
instance space 𝑋.

2. We formalize new paradigms of generation called “uniform” and
“non-uniform” generation and provide their characterizations.

3. We show that (uniform) generation and prediction (i.e. PAC and 
online learnability) are incomparable – there are classes that are 
generatable but not predictable and vice versa.



The story so far…

• In 1967, Mark Gold studied the problem of language identification 
in the limit.

• There is a countable set of strings 𝑈 and a public family of 
languages ℒ = {𝐿1, 𝐿2, … } where 𝐿𝑖 ⊂ 𝑈.

• An adversary secretly picks a language 𝐾 ∈ ℒ and begins 
enumerating the strings 𝑤1, 𝑤2, … in 𝐾 over rounds 𝑡 = 1, 2, …

• After observing 𝑤𝑡 in round 𝑡, you make a prediction ෠𝐿𝑡 ∈ ℒ.
• You identify 𝐾 in the limit if there exists a 𝑡⋆ ∈ ℕ such that  ෠𝐿𝑠 = 𝐾

for all 𝑠 ≥ 𝑡⋆.
• ℒ is identifiable in the limit if you can identify every 𝐾 ∈ ℒ.



The story so far…

Gold [1967] show that many natural families of languages are not 
identifiable in the limit. 

This theorem is often interpreted as a negative result:
Language Identification is hard.

Theorem 1 (Gold [1967])
The family of regular languages is not identifiable in the limit. 



The story so far…

Dana Angluin, in a series of two works, gives a characterization of 
which language families are identifiable in the limit. 

Angluin’s characterization rules out the vast majority of natural 
language families.

Theorem 2 (Angluin [1979, 1980])
A language family ℒ is identifiable in the limit if and only if for every 
𝐿 ∈ ℒ, there exists a finite 𝑆 ⊂ 𝐿 such that for every 𝐿′ ∈ ℒ:

𝑆 ⊂ 𝐿′  ⇒ 𝐿′ ⊄ 𝐿 



The story so far…

• The Gold-Angluin model inspired a large amount of discussion, 
including positive and negative criticisms.

• Some argued that an adversarial Nature is unrealistic and 
proposed relaxations under which identifiability is possible. 

• Regardless, the Gold-Angluin model stands as one of the earliest 
works in machine learning.



The story so far…

44 years later, Jon Kleinberg and Sendhil Mullainathan revisit the 
classical setup with a modern twist: 

 What about generation instead of identification?

 Is it easier to eventually generate new strings from the secret 
language as opposed to identifying it?



The KM Model

• There is a countable set of strings 𝑈 and a public family of 
languages ℒ = {𝐿1, 𝐿2, … } where 𝐿𝑖 ⊂ 𝑈 and 𝐿𝑖 = ∞.

• An adversary secretly picks a language 𝐾 ∈ ℒ and begins 
enumerating the strings 𝑤1, 𝑤2, … in 𝐾 over rounds 𝑡 = 1, 2, …

• After observing 𝑤𝑡  in round 𝑡, you make a prediction ෝ𝑤𝑡 ∈ 𝑈.
• You generate from 𝐾 in the limit if there exists a 𝑡⋆ ∈ ℕ such that  

ෝ𝑤𝑠 ∈ 𝐾 ∖ {𝑤1, … , 𝑤𝑠} for all 𝑠 ≥ 𝑡⋆.

• ℒ is generatable in the limit if you can generate from 𝐾 for every 
𝐾 ∈ ℒ. 



The KM Model

Remarkably, unlike identification, KM [2024] show that every 
countable language family is generatable in the limit. 

Theorem 3 (KM [2024])
Every countable language family ℒ is generatable in the limit.

Moreover, for every finite ℒ, generation is possible after observing 
only a constant number of distinct strings. 

Theorem 4 (KM [2024])
If ℒ < ∞, there exists a 𝑐 ∈ ℕ such that generation is 
possible after observing 𝑐 distinct strings from 𝐾. 



Beyond language identification/generation

• Both the Gold-Angluin and KM interpret their results with respect 
to language generation.

• However, nothing is special about languages – the same results 
hold for generating abstract objects (images, molecules, etc …)

• In statistical learning theory (SLT), we work with abstract spaces.

Can these results be formulated through the lens of SLT?



Generation in the lens of SLT

• Let 𝑋 be an abstract countable instance space (e.g. images, 
molecules, …)

• Let 𝐻 ⊆ {0, 1}𝑋 be a collection of functions that map instances to 
a binary label {0, 1} (e.g. neural networks, transformers, …)

• For every ℎ ∈ 𝐻, define supp ℎ ≔  {𝑥 ∈ 𝑋: ℎ 𝑥 = 1}.



Generation in the lens of SLT

In Language generation: 
• 𝑋 is the set of valid strings.
• Each ℎ ∈ 𝐻 is a language over 𝑋 parameterized by supp(ℎ).
• 𝐻 is a language family.

Assumption 1.
A class 𝐻 ⊆ {0, 1}𝑋 satisfies the Uniformly Unbounded 
Support (UUS) property if supp ℎ = ∞ for all ℎ ∈ 𝐻.



Generatability in the limit

• A generator is a map 𝐺: 𝑋⋆ → 𝑋.
• We can use generators to rigorously define what it means for 𝐻 to 

be “generatable in the limit.” 

Definition 1(KM [2024]). 
Let 𝐻 ⊆ {0, 1}𝑋 be any class that satisfies the UUS property. 
𝐻 is generatable in the limit if there exists a generator 𝐺 
such that for every ℎ ∈ 𝐻 and every enumeration 𝑥1, 𝑥2 … of 
supp(ℎ) there exists a 𝑡⋆ ∈ ℕ such that for all 𝑠 ≥ 𝑡⋆

𝐺 𝑥1, … , 𝑥𝑠 ∈ supp(ℎ) ∖ {𝑥1, … , 𝑥𝑠}.



Beyond “Generatability in the Limit”

• In Definition 1, the time step 𝑡⋆ after which the Generator must be 
perfect can depend on:

1. The hypothesis ℎ chosen by the adversary and
2. The enumeration of supp(ℎ).

• This is unsatisfying as, in practice, we would like to know when our 
generator will be perfect.

• To this end, we can go beyond “generatability in the limit” by 
swapping the order of quantifiers. 



Non-uniform Generatability

Definition 2 (Non-uniform Generatability).
Let 𝐻 ⊆ {0, 1}𝑋 be any class that satisfies the UUS 
property. 𝐻 is non-uniformly generatable if there exists a 
generator 𝐺 such that for every ℎ ∈ 𝐻 there exists a 𝑑⋆ such 
that for every sequence 𝑥1, 𝑥2, … ⊆ supp(ℎ), if there exists a 
𝑡⋆ ∈ ℕ such that {𝑥1, … , 𝑥𝑡⋆} = 𝑑⋆, then for all 𝑠 ≥ 𝑡⋆ 

𝐺 𝑥1, … , 𝑥𝑠 ∈ supp(ℎ) ∖ {𝑥1, … , 𝑥𝑠}.



Uniform Generatability

The strongest form of generatability follows by only allowing a 
dependence on 𝐻.

Definition 3 (Uniform Generatability).
Let 𝐻 ⊆ {0, 1}𝑋 be any class that satisfies the UUS 
property. 𝐻 is uniformly generatable if there exists a 
generator 𝐺 and 𝑑⋆ such that for every ℎ ∈ 𝐻  and every 
sequence 𝑥1, 𝑥2 …  ⊆ supp(ℎ), if there exists a 𝑡⋆ ∈ ℕ such 
that {𝑥1, … , 𝑥𝑡⋆} = 𝑑⋆, then for all 𝑠 ≥ 𝑡⋆ 

𝐺 𝑥1, … , 𝑥𝑠 ∈ supp(ℎ) ∖ {𝑥1, … , 𝑥𝑠}.



Comparisons of Generatability

• It turns out that: 
Uniform Gen. ⇒ Non-uniform Gen. ⇒ Gen. in the limit.

• Moreover, this can be tight: 

Lemma 1.
There exists classes 𝐻1, 𝐻2 ⊆ 0, 1 𝑋satisfying the UUS 
property such that 

• 𝐻1 is gen. in the limit but not non-uniformly gen. 
• 𝐻2 is non-uniformly gen. but not uniformly gen.



Summary of existing results

Theorem 3 and 4 (KM [2024])
Let 𝐻 ⊆ {0, 1}𝑋 satisfy the UUS property. 
• If 𝐻 is countable, then 𝐻 is generatable in the limit.
• If 𝐻 is finite, then 𝐻 is uniformly generatable.



Summary of existing results

• Unfortunately, KM [2024] do not provide a characterization of 
which classes are uniformly and non-uniformly generatable.

• In fact, they don’t provide a characterization of which classes are 
generatable in the limit!

• We aim to close some of these gaps by answering:

What are necessary and sufficient conditions for a class 𝐻 to be 
uniformly or non-uniformly generatable?   



Towards a characterization of generatability

• In learning theory, such conditions are often expressed in terms of  
combinatorial dimensions.

• A combinatorial dimension is a function
dim ∶ 2 0,1 𝑋

→ ℕ ∪ ∞

   such that dim(𝐻) captures the expressivity of 𝐻.
• For example, the VC/Littlestone dimension characterizes 

PAC/online learnability of a class 𝐻 ⊆ {0, 1}𝑋.
• In this work, we present a new dimension called the Closure 

dimension.



Closure Dimension

Definition 1(Closure Dimension)
The Closure dimension of  𝐻 ⊆ {0, 1}𝑋, denoted 𝐶(𝐻), is 
the largest 𝑑 ∈ ℕ for which there exists distinct 𝑥1, … , 𝑥𝑑 ∈
𝑋𝑑  such that 𝑆 𝐻, 𝑥1:𝑑 ≥ 1 and 

ሩ

ℎ∈𝑆 𝐻,𝑥1:𝑑

supp(ℎ) < ∞

where 𝑆 𝐻, 𝑥1:𝑑 ≔  {ℎ ∈ 𝐻: 𝑥1:𝑑 ⊂ supp(ℎ)}. 
If this is true for arbitrarily large 𝑑 ∈ ℕ, then we say 𝐶 𝐻 =
∞.  If it is not true for 𝑑 = 1, then we say 𝐶 𝐻 = 0.



Closure Dimension

• If 𝐶 𝐻 = 𝑑, you can predict perfectly after observing any 𝑑 + 1 
distinct instances since

ሩ

ℎ∈𝑆 𝐻,𝑥1:𝑑+1

supp(ℎ) = ∞.

• If 𝐶 𝐻 = ∞, the adversary can force a mistake at arbitrarily large 
𝑡 ∈ ℕ since  for every 𝑡 ∈ ℕ, there exists 𝑥1, … , 𝑥𝑛 such that 

ሩ

ℎ∈𝑆 𝐻,𝑥1:𝑛

supp(ℎ) ∖ {𝑥1, … , 𝑥𝑛} = 0.



A Characterization of Uniform Generatability

Theorem 5.
Let 𝐻 ⊆ 0, 1 𝑋satisfy the UUS property. The following 
statements are equivalent. 

• 𝐻 is uniformly generatable
• 𝐶 𝐻 < ∞



Improvements over KM [2024]

• KM [2024] showed that all finite classes are uniformly generatable.
• We improve upon this result by giving an uncountably infinite class 

that is uniformly generatable. 

Example 1.
Let 𝑋 =  ℤ and take 𝐻 =  {𝑥 ↦ 1 𝑥 ≤ 0 𝑜𝑟 𝑥 ∈ 𝐴 : 𝐴 ∈ 2ℕ}. 
Then, 𝐻 is uncountably large, satisfies the UUS property, and 
is uniformly generatable. 

• In fact, Lemma 1 shows that countableness is not necessary for 
generatability in the limit!



What about Non-uniform Generatability?

We can use the Closure dimension to also provide a 
characterization of non-uniform generatability. 

Theorem 6.
Let 𝐻 ⊆ 0, 1 𝑋satisfy the UUS property. The following 
statements are equivalent. 

• 𝐻 is non-uniformly generatable.
• There exists a countable sequence 𝐻1, 𝐻2, … such that 

𝐻 = 𝑖∈ℕڂ  𝐻𝑖  and 𝐶 𝑖=1ڂ
𝑛 𝐻𝑖 < ∞ for all 𝑛 ≥ 1.



What about non-uniform generatability?

Theorem 6 implies that all countable classes are non-uniformly 
generatable!

This also provides an improvement* over KM [2024] since 
Non-uniformly generatable ⇒ Generatable in the limit.

Corollary 1.
Let 𝐻 ⊆ 0, 1 𝑋satisfy the UUS property. If 𝐻 is countable, 
then 𝐻 is non-uniformly generatable. 



What about generatability in the limit?

Open Question.
What characterizes generatability in the limit?



Uniform Generation vs. Prediction

• In prediction, we are given an instance 𝑥 ∈ 𝑋, and the goal is 
accurately predict its true label 𝑦 ∈ 0, 1 .

• We can measure the predictability of a hypothesis class through 
PAC and online learnability.

• In particular, a class 𝐻 ⊆ 0, 1 𝑋 is PAC/online learnable if and 
only if its the VC/Littlestone dimensions are finite. 



Uniform Generation vs. Prediction

Surprisingly, we show that these two notions are incompatible.

Theorem 7.
There exists countable classes 𝐻1, 𝐻2 ⊆ 0, 1 𝑋 satisfying 
the UUS property such that:

• 𝑉𝐶 𝐻1 = ∞ but 𝐶 𝐻1 = 0.
• 𝐿 𝐻2 = 2 but 𝐶 𝐻2 = ∞.

Generation and Prediction are different paradigms in machine 
learning.



Summary

• We formalized old and new notions of generatability in the 
language of learning theory.

• We strengthen the results of KM [2024] by showing that all 
countable classes are non-uniformly generatable.

• By taking a learning-theoretic lens, we uncover fundamental 
differences between prediction and generation. 



Extensions and Future Directions

We have barely scratched the surface.
1. Randomized Generatability: a randomized generator is a map 𝐺: 𝑋⋆ →

Π 𝑋 , where  Π(𝑋) denotes the set of all measures. What is the right 
notion of randomized generatability?

2. Agnostic Generatability: what is the right model to account for the 
fact that we may not observe a perfect enumeration of positive 
instances?

3. Generatability + “X”: which classes are generatable privately, fairly, 
robustly, …?

4. Probabilistic Generatability: what characterizes the probabilistic 
version of our setting where positive instances are drawn iid? 



Extensions and Future Directions

5. Prompted Generatability: how do we account for prompts in our 
model? Will the characterization of generatability change?

6. Boosting for Generatability: given a weak, randomized generator, 
is it possible to “boost” it into to a strong, randomized 
generator?

7. Distributed Generatability: how much communication is needed 
to generate effectively if positive examples are distributed 
amongst 𝑁 parties?

8. and many, many more…



Thanks for listening!
Questions?
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